首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对多目标作业车间调度问题,提出一种混合变异杂草优化算法。该算法采用基于各子目标熵值权重的欧氏贴近度作为适应度值计算方法,引导种群向Pareto前端进化。在进化过程中,运用快速非支配排序策略构建Pareto档案,并利用进化种群中最优个体实时更新Pareto最优解集,提升算法的优化性能;同时通过引入变异算子增加种群多样性,避免算法陷入局部最优。最后,基于Benchmark算例的仿真实验,验证了该算法求解多目标作业车间调度问题的有效性。  相似文献   

2.
3.
针对作业车间调度问题JSP(Job-shop scheduling problem),提出一种入侵式杂草优化算法。该算法中,子代以正态分布方式在父代个体周围扩散,兼顾全局搜索和局部搜索,并根据迭代次数不同对二者强度进行调节。通过典型算例进行仿真试验,并在反复实验中对算法参数进行修正。测试结果表明杂草算法求解作业车间调度问题的可行性和有效性,优于萤火虫算法和基本粒子群算法,是解决生产调度问题的一种有效方法。  相似文献   

4.
根据柔性作业车间的生产特点,对基本猫群优化算法进行设计和改进,提出了一种改进型猫群优化算法(Improved Cat Swarm Optimization,ICSO),用于优化车间内工件的最大完工时间。算法给出了两段式个体位置编码方式和基于启发式算法的种群初始化策略;采用自适应行为模式选择方法,使其能够有效协调算法全局和局部搜索;提出了基于多样化搜寻算子的搜寻模式,增强算法的全局搜索能力;提出了基于莱维飞行的跟踪模式,增强算法的局部搜索能力。此外,算法中还引入了跳跃机制,使算法性能能够得到进一步的改善。实验数据表明ICSO算法在求解FJSP问题方面具有一定的有效性。  相似文献   

5.
针对柔性作业车间调度问题,在研究和分析蝙蝠算法的基础上,提出一种改进蝙蝠算法来求解.为了有效地表达出工序与粒子种群之间的关系,提出一种单层整数编码策略.在粒子的速度和位置方面,算法重新定义速度和位置的相关算子.为了克服基本蝙蝠算法固定参数不足的缺点,重新调整惯性权重的值,提出一种呈指数递减的惯性权重策略.针对具体生产实例进行验证,实验数据表明,该改进算法在求解柔性作业车间调度问题上具有良好的性能,是一种有效的调度算法.  相似文献   

6.
针对柔性作业车间调度问题,对生物地理学优化算法中的迁移操作和突变操作进行改进,提出一种改进的生物地理学优化算法。在算法初始阶段采用混合初始化的方法,提高初始种群质量;对迁移操作和突变操作采用不同选择方法,提高算法全局搜索能力,加快收敛速度。通过编程仿真对柔性作业车间调度问题标准测试算例进行运算,并与其他文献中的计算结果进行比较,验证了该算法是可行和有效的,也可用于其他车间调度问题中。  相似文献   

7.
柔性作业车间调度问题具有解集多样化与解空间复杂的特点,传统多目标优化算法求解时容易陷入局部最优且丢失解的多样性。在建立以最大完工时间、最大能耗、机器总负荷为优化目标的柔性作业车间调度模型的情况下,提出一种改进的非支配排序遗传算法(Improved Non-dominated Sorting Genetic Algorithm II, INSGA-II)求解该模型。INSGA-II算法先将随机式初始化与启发式初始化方法混合,提高种群多样性;然后对工序部分与机器部分采用针对性的交叉、变异策略,提高算法全局搜索能力;最后设计自适应的交叉、变异算子以兼顾算法的全局收敛与局部寻优能力。在mk01~mk07标准数据集上的实验结果显示INSGA-II算法有着更优的算法收敛性与解集多样性。  相似文献   

8.
在多目标柔性车间作业调度问题的研究中,求解算法与多目标处理至关重要。因此,基于非支配排序遗传算法提出了改进遗传算法求解该问题,设计了相应的矩阵编码、交叉算子,改进了非劣前沿分级方法,并提出了基于Pareto等级的自适应变异算子以及精英保留策略。实例计算表明,该算法可以利用传统遗传算法全局搜索能力的同时可以防止早熟现象的发生。改进非劣前沿分级方法可以快速得到Pareto最优解集,进一步减小了计算复杂度,而且可以根据种群的多样性改变变异概率,有利于保持种群多样性、发掘潜力个体。  相似文献   

9.
提出一种混合正余弦鲸鱼优化算法,将其应用于柔性作业车间调度问题的研究,以最小化最大完工时间为目标;首先进行两段式编码,使连续型鲸鱼优化算法可应用于柔性作业车间调度问题,并对基本鲸鱼优化算法加入非线性收敛因子平衡搜索与开发阶段;以正余弦算法策略改进鲸鱼个体位置更新方式与螺旋方式,提升算法寻优能力;最后以实验数据验证混合正...  相似文献   

10.
孙新宇 《软件工程》2022,(11):15-18+14
柔性作业车间调度问题(Flexible Jobshop Scheduling Problem,FJSP)是经典的NP-hard(Nondeterministic Polynomial-time hard)问题,针对该复杂问题,需要建立一个多目标的数学模型,采用灰狼优化算法对柔性作业车间的加工完成时间、总耗能和总机器负荷这三个目标进行优化,以加工完成时间、总耗能和总机器负荷作为研究目标。灰狼优化算法(GWO)是一种具有较高的寻优精度和收敛速度的算法,在此基础上对灰狼优化算法的初始化种群进行改进,为了使灰狼算法适用于多目标问题,与非支配排序遗传算法结合,引入非支配排序与拥挤度的概念,用于灰狼算法对种群的更新。对柔性作业车间调度算例进行测试,结果表明改进的灰狼算法针对多目标柔性作业车间调度可以找到最优解,以较少的迭代次数找到最小加工时间、最小总耗能及最小总机器负荷,对车间调度问题进行了优化。  相似文献   

11.
针对物料机器人指派和作业车间的联合调度问题,设计了一种改进灰狼优化算法进行求解。根据机器人作业车间调度和灰狼优化算法的各自特点,提出一种面向机器人转移工序的编码方式。解码时,考虑工件运输的前提是工件在当前机器的工序已加工,提出融合间隙解码方法的驱动解码方法。为避免算法陷入局部最优,在灰狼个体位置更新后加入个体变异方法。最后,通过与其他智能优化算法及同类算法进行比较,验证了所提灰狼优化算法的有效性。  相似文献   

12.
姜天华 《控制与决策》2018,33(3):503-508
将灰狼优化算法(GWO)用于柔性作业车间调度问题(FJSP),以优化最大完工时间为目标,提出一种混合灰狼优化算法(HGWO).首先,采用两段式编码方式,建立GWO连续空间与FJSP离散空间的映射关系;其次,设计种群初始化方法,保证算法初始解的质量;然后,嵌入一种变邻域搜索策略,加强算法的局部搜索能力,引入遗传算子,提升算法的全局探索能力;最后,通过实验数据验证HGWO算法在求解FJSP问题方面的有效性.  相似文献   

13.
柔性作业车间调度问题是生产管理领域和组合优化领域的重要分支.本文提出一种基于Pareto支配的混合粒子群优化算法求解多目标柔性作业车间调度问题.首先采用基于工序排序和机器分配的粒子表达方式,并直接在离散域进行位置更新.其次,提出基于BaldWinian学习策略和模拟退火技术相结合的多目标局部搜索策略,以平衡算法的全局探索能力和局部开发能力.然后引入Pareto支配的概念来比较粒子的优劣性,并采用外部档案保存进化过程中的非支配解.最后用于求解该类问题的经典算例,并与已有算法进行比较,所提算法在收敛性和分布均匀性方面均具有明显优势.  相似文献   

14.
针对柔性作业车间调度问题,提出了一种改进的离散蝙蝠算法。该算法采用双层编码序列方式,利用均衡机器负载分配策略和插入式解码方案初始化种群,同时设计了离散蝙蝠算法的速度、位置更新的相关算子和操作,引入了平衡调整因子改善算法搜索能力。通过案例测试并与其他算法比较,验证了改进的离散蝙蝠算法可以有效地求解柔性作业车间调度问题,并具有较高的精确度。  相似文献   

15.
针对以最小化完工时间为目标的柔性流水车间调度问题,提出了一种新型离散蝙蝠算法。介绍了蝙蝠算法的基本思想,重新定义速度与位置的加法操作来实现粒子的位移,给出了算法的具体实现方案。通过实例仿真和算法比较验证了算法的优化性能,实验结果表明该算法可以有效地求解柔性流水车间调度问题。  相似文献   

16.
用带蚁群搜索的多种群遗传算法求解作业车间调度问题   总被引:10,自引:0,他引:10  
结合遗传算法和蚁群算法的优点,提出一种带蚁群搜索的多种群遗传算法.多个种群各自遗传进化,用蚁群搜索得到的解替代各种群中的较劣个体,增加种群的多样性,提高种群的质量;根据各种群最优个体设定初始信息素,大大缩短信息素的累积过程,加快蚁群搜索的速度.利用算法对典型作业车间调度问题进行求解,仿真计算结果表明,该算法是有效的.  相似文献   

17.
阳光灿  熊禾根 《计算机仿真》2022,39(2):221-225,292
针对最小化最大完工时间目标的柔性作业车间调度问题,提出了一种改进的遗传算法.在染色体编码方式上,与众多相关研究中所采用两级编码的方式不同,仅采用了基于操作的编码,极大简化了遗传操作.提出一种以最早完成时刻为规则的解码算法解决机器指派决策问题,并充分利用机器空闲时间.将算法应用在BRData基准算例上进行仿真验证.通过与...  相似文献   

18.
根据钣金生产线特点建立了具有工件优先级约束的多目标柔性作业车间动态调度模型,并提出改进的多目标灰狼优化算法用于求解该模型。首先,针对该模型设计出一种同时满足工件优先级约束、工序优先级约束和设备加工约束条件的剪枝式解码方案;其次,提出一种非线性收敛因子和动态位置更新策略,用于平衡经典灰狼优化算法的探索能力和利用能力;最后,为减少设备故障对原始调度方案的影响,设计了一种动态重调度策略。通过实验验证了改进多目标灰狼优化算法求解钣金车间动态调度问题的有效性和动态重调度策略的可行性。  相似文献   

19.
以某大型家具企业的柔性生产制造过程中调度问题为研究对象,提出了一种主要用于求解柔性作业车间调度问题的多策略鲸鱼优化算法(multi-strategy whale optimization algorithm, MWOA),首先,为了提高初始种群的多样性,引入混沌理论来初始化种群;同时设计了非线性收敛因子和自适应惯性权重系数来平衡全局探索和局部开发能力;然后结合差分进化(differential evolution, DE)算子提高了WOA的利用和搜索能力,最后采取最优个体混沌搜索策略,减少WOA算法出现早熟收敛现象的概率.以最小化最大完工时间为求解目标,对基准测试问题与某家具企业的生产制造过程的调度优化问题进行了求解,结果表明提出来的多策略鲸鱼优化算法克服了基本鲸鱼优化算法寻优精度低、收敛速度慢及容易陷入局部最优等缺陷,与对比算法比较,取得了更好的寻优效果.  相似文献   

20.
目前已经有许多解决作业车间调度问题的启发式求解方法,但这些方法多数局限于单目标,因此不能满足现实生活中多目标作业车间调度问题的应用需求.提出一种改进的蚁群算法启发式地搜索多目标车间作业调度问题的近似最优解以满足实际的应用需求.通过对转移概率以及信息素更新方式进行改进,并融合交叉策略,确保算法在加快搜索收敛速度的同时又避免陷入局部最优.仿真实验证明,改进的算法具有较好的性能,能够解决实际生活中的多目标作业车间调度问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号