首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
癫痫的发作会给患者的身体和精神造成极大的创伤,对癫痫发作的准确预测可以及时协助医生对患者采取治疗措施.为了准确预测癫痫发作,提出脑电特征和多通道脑电交互特征相融合的癫痫发作预测方法.首先,提出多尺度符号化排列传递熵对多通道脑电信号交互信息进行分析,生成同步矩阵,并通过显著性分析筛选与癫痫发作相关的重要脑电通道,减少不必要特征对分类的干扰;然后,对筛选通道后的脑电信号生成表征脑电信号特征的功率谱密度能量图(PSDED)和描述脑通道交互特征的同步矩阵图(SMD),将两个特征图融合,采用深度卷积神经网络(DCNN)对癫痫患者脑电信号进行分类识别,提高学习能力和泛化能力,分类准确率可达到96.825%;最后,在分类的基础上采用预测评价系统对癫痫发作预测性能进行评估,癫痫发作预测范围(SPH)为10 min和发作发生期(SOP)为10 min时,预测敏感性达到96.66%,误检率可达到0.03/h;当SPH为30min,SOP为10 min时,预测敏感性达到93.17%,误检率可达到0.05/h.与现有研究结果相比较,所提出方法具有较好的预测敏感度和较低的误检率.  相似文献   

2.
Epileptic seizures are manifestations of epilepsy. Careful analyses of the electroencephalograph (EEG) records can provide valuable insight and improved understanding of the mechanisms causing epileptic disorders. The detection of epileptiform discharges in the EEG is an important component in the diagnosis of epilepsy. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in diagnostic classification. This paper deals with a novel method of analysis of EEG signals using wavelet transform and classification using artificial neural network (ANN) and logistic regression (LR). Wavelet transform is particularly effective for representing various aspects of non-stationary signals such as trends, discontinuities and repeated patterns where other signal processing approaches fail or are not as effective. Through wavelet decomposition of the EEG records, transient features are accurately captured and localized in both time and frequency context. In epileptic seizure classification we used lifting-based discrete wavelet transform (LBDWT) as a preprocessing method to increase the computational speed. The proposed algorithm reduces the computational load of those algorithms that were based on classical wavelet transform (CWT). In this study, we introduce two fundamentally different approaches for designing classification models (classifiers) the traditional statistical method based on logistic regression and the emerging computationally powerful techniques based on ANN. Logistic regression as well as multilayer perceptron neural network (MLPNN) based classifiers were developed and compared in relation to their accuracy in classification of EEG signals. In these methods we used LBDWT coefficients of EEG signals as an input to classification system with two discrete outputs: epileptic seizure or non-epileptic seizure. By identifying features in the signal we want to provide an automatic system that will support a physician in the diagnosing process. By applying LBDWT in connection with MLPNN, we obtained novel and reliable classifier architecture. The comparisons between the developed classifiers were primarily based on analysis of the receiver operating characteristic (ROC) curves as well as a number of scalar performance measures pertaining to the classification. The MLPNN based classifier outperformed the LR based counterpart. Within the same group, the MLPNN based classifier was more accurate than the LR based classifier.  相似文献   

3.
癫痫发作检测可以实现脑电分类和病灶定位,对癫痫的临床治疗具有重要意义。针对大数据量、高特征值空间长程脑电的快速和准确分类问题,提出一种基于最大相关和最小冗余准则及极限学习机的癫痫发作检测方法。对脑电信号进行短时傅里叶变换,并选取能量时频分布为特征,利用基于最大相关和最小冗余准则的方法进行特征选择,并使用极限学习机、支持向量机和反向传播算法对癫痫不同状态进行分类和判别。实验结果表明,极限学习机的分类准确率和训练速度两方面性能优于支持向量机和反向传播算法,发作间期和发作期的分类准确率达到98%以上,训练时间仅为0.8s,所提方法能够实时准确地检测癫痫发作。  相似文献   

4.
Epilepsy is a neurological disorder which is characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) is a commonly used signal for detection of epileptic seizures. This paper presents a new method for classification of ictal and seizure-free EEG signals. The proposed method is based on the empirical mode decomposition (EMD) and the second-order difference plot (SODP). The EMD method decomposes an EEG signal into a set of symmetric and band-limited signals termed as intrinsic mode functions (IMFs). The SODP of IMFs provides elliptical structure. The 95% confidence ellipse area measured from the SODP of IMFs has been used as a feature in order to discriminate seizure-free EEG signals from the epileptic seizure EEG signals. The feature space obtained from the ellipse area parameters of two IMFs has been used for classification of ictal and seizure-free EEG signals using the artificial neural network (ANN) classifier. It has been shown that the feature space formed using ellipse area parameters of first and second IMFs has given good classification performance. Experimental results on EEG database available by the University of Bonn, Germany, are included to illustrate the effectiveness of the proposed method.  相似文献   

5.
The accurate and early detection of epileptic seizures in continuous electroencephalographic (EEG) data has a growing role in the management of patients with epilepsy. Early detection allows for therapy to be delivered at the start of seizures and for caregivers to be notified promptly about potentially debilitating events. The challenge to detecting epileptic seizures, however, is that seizure morphologies exhibit considerable inter-patient and intra-patient variability. While recent work has looked at addressing the issue of variations across different patients (inter-patient variability) and described patient-specific methodologies for seizure detection, there are no examples of systems that can simultaneously address the challenges of inter-patient and intra-patient variations in seizure morphology. In our study, we address this complete goal and describe a multi-task learning approach that trains a classifier to perform well across many kinds of seizures rather than potentially overfitting to the most common seizure types. Our approach increases the generalizability of seizure detection systems and improves the tradeoff between latency and sensitivity versus false positive rates. When compared against the standard approach on the CHB–MIT multi-channel scalp EEG data, our proposed method improved discrimination between seizure and non-seizure EEG for almost 83 % of the patients while reducing false positives on nearly 70 % of the patients studied.  相似文献   

6.
The electroencephalogram (EEG) has proven a valuable tool in the study and detection of epilepsy. This paper investigates for the first time the use of Permutation Entropy (PE) as a feature for automated epileptic seizure detection. A Support Vector Machine (SVM) is used to classify segments of normal and epileptic EEG based on PE values. The proposed system utilizes the fact that the EEG during epileptic seizures is characterized by lower PE than normal EEG. It is shown that average sensitivity of 94.38% and average specificity of 93.23% is obtained by using PE as a feature to characterize epileptic and seizure-free EEG, while 100% sensitivity and specificity were also obtained in single-trial classifications.  相似文献   

7.
脑电信号智能识别是癫痫病检测的重要手段,为更加准确地预测癫痫发作,针对目前的深度学习方法特别是卷积神经网络在脑电信号分类方面存在的一些问题,如算法复杂度过高、样本量太少导致分类效果差等,提出基于傅里叶同步压缩变换和深度卷积生成对抗网络的癫痫脑电信号检测方法。首先同步压缩方法将短时傅里叶变换处理后的信号时频能量进行压缩,使得频谱图像精度更高;其次构建深度卷积生成对抗网络来提取特征;最后实现癫痫发作预测。实验在CHB-MIT脑电数据集上进行,结果表明该方法具有97.9%的检测准确率。使用生成对抗网络有效解决了样本量不足的问题,结合同步压缩处理方法后,具有良好的识别准确性。  相似文献   

8.
EEG signal analysis involves multi-frequency non-stationary brain waves from multiple channels. Segmenting these signals, extracting features to obtain the important properties of the signal and classification are key aspects of detecting epileptic seizures. Despite the introduction of several techniques, it is very challenging when multiple EEG channels are involved. When many channels exist, a spatial filter is required to eliminate noise and extract relevant information. This adds a new dimension of complexity to the frequency feature space. In order to stabilize the classifier of the channels, feature selection is very important. Furthermore, and to improve the performance of a classifier, more data is required from EEG channels for complex problems. The increase of such data poses some challenges as it becomes difficult to identify the subject dependent bands when the channels increase. Hence, an automated process is required for such identification.The proposed approach in this work tends to tackle the multiple EEG channels problem by segmenting the EEG signals in the frequency domain based on changing spikes rather than the traditional time based windowing approach. While to reduce the overall dimensionality and preserve the class-dependent features an optimization approach is used. This process of selecting an optimal feature subset is an optimization problem. Thus, we propose an adaptive multi-parent crossover Genetic Algorithm (GA) for optimizing the features used in classifying epileptic seizures. The GA-based approach is used to optimize the various features obtained. It encodes the temporal and spatial filter estimates and optimize the feature selection with respect to the classification error. The classification was done using a Support Vector Machine (SVM).The proposed technique was evaluated using the publicly available epileptic seizure data from the machine learning repository of the UCI center for machine learning and intelligent systems. The proposed approach outperforms other ones and achieved a high level of accuracy. These results, indicate the ability of a multi-parent crossover GA in optimizing the feature selection process in EEG classification.  相似文献   

9.
Electroencephalography signals are typically used for analyzing epileptic seizures. These signals are highly nonlinear and nonstationary, and some specific patterns exist for certain disease types that are hard to develop an automatic epileptic seizure detection system. This paper discussed statistical mechanics of complex networks, which inherit the characteristic properties of electroencephalography signals, for feature extraction via a horizontal visibility algorithm in order to reduce processing time and complexity. The algorithm transforms a time series signal into a complex network, which some features are abbreviated. The statistical mechanics are calculated to capture distinctions pertaining to certain diseases to form a feature vector. The feature vector is classified by multiclass classification via a k‐nearest neighbor classifier, a multilayer perceptron neural network, and a support vector machine with a 10‐fold cross‐validation criterion. In performance evaluation of proposed method with healthy, seizure‐free interval, and seizure signals, firstly, input data length is regarded among some practical signal samples by optimizing between accuracy‐processing time, and the proposed method yields outstanding performance on the average classification accuracy for 3‐class problems mainly for detection of seizure‐free interval and seizure signals and acceptable results for 2‐class and 5‐class problems comparing with conventional methods. The proposed method is another tool that can be used for classifying signal patterns, as an alternative to time/frequency analyses.  相似文献   

10.
Automating the detection of epileptic seizures could reduce the significant human resources necessary for the care of patients suffering from intractable epilepsy and offer improved solutions for closed-loop therapeutic devices such as implantable electrical stimulation systems. While numerous detection algorithms have been published, an effective detector in the clinical setting remains elusive. There are significant challenges facing seizure detection algorithms. The epilepsy EEG morphology can vary widely among the patient population. EEG recordings from the same patient can change over time. EEG recordings can be contaminated with artifacts that often resemble epileptic seizure activity. In order for an epileptic seizure detector to be successful, it must be able to adapt to these different challenges. In this study, a novel detector is proposed based on a support vector machine assembly classifier (SVMA). The SVMA consists of a group of SVMs each trained with a different set of weights between the seizure and non-seizure data and the user can selectively control the output of the SVMA classifier. The algorithm can improve the detection performance compared to traditional methods by providing an effective tuning strategy for specific patients. The proposed algorithm also demonstrates a clear advantage over threshold tuning. When compared with the detection performances reported by other studies using the publicly available epilepsy dataset hosted by the University of BONN, the proposed SVMA detector achieved the best total accuracy of 98.72%. These results demonstrate the efficacy of the proposed SVMA detector and its potential in the clinical setting.  相似文献   

11.
Mixture of experts (ME) is modular neural network architecture for supervised learning. A double-loop Expectation-Maximization (EM) algorithm has been introduced to the ME network structure for detection of epileptic seizure. The detection of epileptiform discharges in the EEG is an important component in the diagnosis of epilepsy. EEG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT). Then these sub-band frequencies were used as an input to a ME network with two discrete outputs: normal and epileptic. In order to improve accuracy, the outputs of expert networks were combined according to a set of local weights called the “gating function”. The invariant transformations of the ME probability density functions include the permutations of the expert labels and the translations of the parameters in the gating functions. The performance of the proposed model was evaluated in terms of classification accuracies and the results confirmed that the proposed ME network structure has some potential in detecting epileptic seizures. The ME network structure achieved accuracy rates which were higher than that of the stand-alone neural network model.  相似文献   

12.
Epilepsy is one of the most common neurological disorders with 0.8% of the world population. The epilepsy is unpredictable and recurrent, so it is very difficult to treat. In this paper, we propose a new Electroencephalography (EEG) seizure detection method by using the dual-tree complex wavelet (DTCWT) – Fourier features. These features achieve perfect classification rates (100%) for the EEG database from the University of Bonn. These classification rates outperform a number of existing EEG seizure detection methods published in the literature. However, it should be mentioned that several recent works also achieved this perfect classification rate (100%). Our proposed method should be as good as these works since our method only performs the DTCWT transform for up to 5 scales and our method only conducts the FFT to the 4th and 5th scales of the DTCWT decomposition. In addition, we could replace the conventional FFT in our method by sparse FFT so that our method could be even faster.  相似文献   

13.
脑电检测是癫痫疾病诊断的重要手段,但基于脑电信号特征的人工标记方法,对癫痫发作状态识别的准确度较低。将脑功能网络与TSK模糊系统相结合,提出一种癫痫脑电信号识别的新方法。通过分析多通道脑电信号之间的同步性,构建癫痫患者的脑功能网络,采用复杂网络方法提取特征参数;以脑网络参数为输入特征建立TSK模糊系统模型,通过监督式学习训练分类器,用于识别癫痫发作期的脑电波形。实验结果证明了该方法的有效性,模糊分类器对癫痫发作状态识别的准确度达到98.36%,99.48%敏感度和97.24%特异度。该方法将复杂网络与机器学习算法相融合,为通过脑电检测识别癫痫疾病状态提供了新方法,具有重要的应用价值。  相似文献   

14.
In this study, a hierarchical electroencephalogram (EEG) classification system for epileptic seizure detection is proposed. The system includes the following three stages: (i) original EEG signals representation by wavelet packet coefficients and feature extraction using the best basis-based wavelet packet entropy method, (ii) cross-validation (CV) method together with k-Nearest Neighbor (k-NN) classifier used in the training stage to hierarchical knowledge base (HKB) construction, and (iii) in the testing stage, computing classification accuracy and rejection rate using the top-ranked discriminative rules from the HKB. The data set is taken from a publicly available EEG database which aims to differentiate healthy subjects and subjects suffering from epilepsy diseases. Experimental results show the efficiency of our proposed system. The best classification accuracy is about 100% via 2-, 5-, and 10-fold cross-validation, which indicates the proposed method has potential in designing a new intelligent EEG-based assistance diagnosis system for early detection of the electroencephalographic changes.  相似文献   

15.
The electroencephalographic (EEG) features of post traumatic epilepsy (PTE) are analyzed in the paper. The proposed method allows detection and classification of sleep spindles and epilepsy seizures. The experiments were conducted on a laboratory rats before and after traumatic brain inquiry (TBI). In the introduction, the details of the experiment along with the information about manual markup are provided. In the first part, the new method of sleep spindles and epilepsy seizures detection is described. The method is based on the analysis of the wavelet spectrogram extrema. Moreover, the described procedure of background extraction and ridge segmentation helps to classify signals as epilepsy seizures and sleep spindles. In the second part, the information about the clustering is given. k-Means clustering of seizures and spindles was performed based on signals power and frequency. The results of the clustering, along with the research of TBI effect on the EEG, are provided in the third part. It was shown that PTE may be considered as the cause of the frequency variance among clusters of sleep spindles and epilepsy seizures.  相似文献   

16.
陈景霞  郝为  张鹏伟  闵重丹  李玥辰 《软件学报》2021,32(12):3869-3883
提出一种脑电图(electroencephalograph,简称EEG)数据表示方法,将一维链式EEG向量序列转换成二维网状矩阵序列,使矩阵结构与EEG电极位置的脑区分布相对应,以此来更好地表示物理上多个相邻电极EEG信号之间的空间相关性.再应用滑动窗将二维矩阵序列分成一个个等长的时间片段,作为新的融合了EEG时空相关性的数据表示.还提出了级联卷积-循环神经网络(CASC_CNN_LSTM)与级联卷积-卷积神经网络(CASC_CNN_CNN)这两种混合深度学习模型,二者都通过CNN卷积神经网络从转换的二维网状EEG数据表示中捕获物理上相邻脑电信号之间的空间相关性,而前者通过LSTM循环神经网络学习EEG数据流在时序上的依赖关系,后者则通过CNN卷积神经网络挖掘局部时间与空间更深层的相关判别性特征,从而精确识别脑电信号中包含的情感类别.在大规模脑电数据集DEAP上进行被试内效价维度上两类情感分类实验,结果显示,所提出的CASC_CNN_LSTM和CASC_CNN_CNN网络在二维网状EEG时空特征上的平均分类准确率分别达到93.15%和92.37%,均高于基准模型和现有最新方法的性能,表明该模型有效提高了EEG情感识别的准确率和鲁棒性,可以有效地应用到基于EEG的情感分类与识别相关应用中.  相似文献   

17.
现有癫痫发作预测方法存在精度较低、错误报警率较高、癫痫患者睡眠脑电特异性、致痫灶位置和类型不同导致脑电信号存在差异的问题.文中提出基于深度神经网络的个性化睡眠癫痫发作预测方法,帮助医生和患者采取及时有效的治疗措施,降低患者患并发症和猝死的概率.对原始脑电信号滤波和分段以去除噪声,保证短时间内触发警报,利用离散小波变换分解信号并提取统计特征表征脑电信号时频特征.再应用双向长短期记忆网络挖掘最具鉴别能力的特征并结合留一法分类,经过决策过程优化得到预测结果.在不同频带限制条件下的实验表明,与睡眠癫痫相关的δ频带信号是影响发作预测性能的重要因素.相比现有睡眠癫痫预测方法,文中方法性能较优.  相似文献   

18.
Electroencephalography is one of the important medical methods to evaluate and treat neurophysiology to combat disease related to seizure. The automatic seizure detection system aims to provide a balanced mechanism by excavating deep knowledge of the basic signal and kinetic domains. Contingent alert is given to initiate treatment to reduce the risk of injury in patients with epilepsy and to overcome contingencies. Moreover, the multi-channel Electroencephalogram (EEG) data of seizure detection in conventional machine learning algorithms cannot effectively accommodate both global and spatial information. Therefore in this work proposed a Nonlinear Vector Decomposed Neural Network (NVDN) to detect the seizure from EEG signal. The proposed NVDN based seizure detection system consist of three major stages they are as follows i) EEG preprocessing ii) Feature Extraction and iii) NVDN Classification. In this work, the NVDN technique is applied to improve the accuracy of seizure detection after using frequency domain feature to obtain the results from EEG waves. The performance of the proposed system is validate through MATLAB simulation. The results of the simulation show that the proposed NVDN method is able to effectively detect the seizure with a sensitivity of 94.7%. Specificity of 94.1% and accuracy 95.60%. As compared with conventional methods the proposed system achieve high detecting ratio.  相似文献   

19.
Seizure detection and classification using signal processing methods has been an important issue of research for the last two decades. In the present study, a novel scheme was presented to detect epileptic seizure activity with very fast and highest accuracy from background electro encephalogram (EEG) data recorded from epileptic and normal subjects. The proposed scheme is based on discrete wavelet packet transform (DWT) with energy, entropy, standard deviation, mean, kurtosis, skewness and entropy estimation at each node of the decomposition tree followed by application of probabilistic neural network (PNN). Normal as well as epileptic EEG epochs were decomposed into approximation and details coefficients till sixth-level using DWT packet. Discrete harmony search with modified differential operator was used to select the optimal features out of all above mentioned statistical and non-statistical parameters. In order to demonstrate the efficacy of the proposed algorithm for classification purpose using PNN, we have implemented 10-fold cross validation. Clinical EEG data recorded from normal as well as epileptic subjects are used to test the performance of this new scheme. It is found that the detection rate is 100% accurate with same level of sensitivity and specificity.  相似文献   

20.
The objective is to develop a non-invasive automatic method for detection of epileptic seizures with motor manifestations. Ten healthy subjects who simulated seizures and one patient participated in the study. Surface electromyography (sEMG) and motion sensor features were extracted as energy measures of reconstructed sub-bands from the discrete wavelet transformation (DWT) and the wavelet packet transformation (WPT). Based on the extracted features all data segments were classified using a support vector machine (SVM) algorithm as simulated seizure or normal activity. A case study of the seizure from the patient showed that the simulated seizures were visually similar to the epileptic one. The multi-modal intelligent seizure acquisition (MISA) system showed high sensitivity, short detection latency and low false detection rate. The results showed superiority of the multi-modal detection system compared to the uni-modal one. The presented system has a promising potential for seizure detection based on multi-modal data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号