首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
Algebraic reconstruction methods, such as the algebraic reconstruction technique (ART) and the related simultaneous ART (SART). reconstruct a two-dimensional (2-D) or three-dimensional (3-D) object from its X-ray projections. The algebraic methods have, in certain scenarios, many advantages over the more popular Filtered Backprojection approaches and have also recently been shown to perform well for 3-D cone-beam reconstruction. However, so far the slow speed of these iterative methods have prohibited their routine use in clinical applications. In this paper, we address this shortcoming and investigate the utility of widely available 2-D texture mapping graphics hardware for the purpose of accelerating the 3-D algebraic reconstruction. We find that this hardware allows 3-D cone-beam reconstructions to be obtained at almost interactive speeds, with speed-ups of over 50 with respect to implementations that only use general-purpose CPUs. However, we also find that the reconstruction quality is rather sensitive to the resolution of the framebuffer, and to address this critical issue we propose a scheme that extends the precision of a given framebuffer by 4 bits, using the color channels. With this extension, a 12-bit framebuffer delivers useful reconstructions for 0.5% tissue contrast, while an 8-bit framebuffer requires 4%. Since graphics hardware generates an entire image for each volume projection, it is most appropriately used with an algebraic reconstruction method that performs volume correction at that granularity as well, such as SART or SIRT. We chose SART for its faster convergence properties.  相似文献   

2.
A new algorithm for three-dimensional reconstruction of two-dimensional crystals from projections is presented, and its applicability to biological macromolecules imaged using transmission electron microscopy (TEM) is investigated. Its main departures from the traditional approach is that it works in real space, rather than in Fourier space, and it is iterative. This has the advantage of making it convenient to introduce additional constraints (such as the support of the function to be reconstructed, which may be known from alternative measurements) and has the potential of more accurately modeling the TEM image formation process. Phantom experiments indicate the superiority of the new approach even without the introduction of constraints in addition to the projection data.  相似文献   

3.
Contour reconstruction in 3-D X-ray CT   总被引:2,自引:0,他引:2  
The authors derives an algorithm for reconstructing contours of an object from 3D cone beam X-ray data. By reducing the amount of the searched-for information, contours, or density jumps instead of the densities themselves, the authors are able to develop fast algorithms for data incomplete with respect to both the movement of the X-ray source and the detector reading. The method is related to local or Lambda tomography. Numerical simulations show the efficiency of the algorithm.  相似文献   

4.
Interior-point methodology for 3-D PET reconstruction   总被引:1,自引:0,他引:1  
Interior-point methods have been successfully applied to a wide variety of linear and nonlinear programming applications. This paper presents a class of algorithms, based on path-following interior-point methodology, for performing regularized maximum-likelihood (ML) reconstructions on three-dimensional (3-D) emission tomography data. The algorithms solve a sequence of subproblems that converge to the regularized maximum likelihood solution from the interior of the feasible region (the nonnegative orthant). We propose two methods, a primal method which updates only the primal image variables and a primal-dual method which simultaneously updates the primal variables and the Lagrange multipliers. A parallel implementation permits the interior-point methods to scale to very large reconstruction problems. Termination is based on well-defined convergence measures, namely, the Karush-Kuhn-Tucker first-order necessary conditions for optimality. We demonstrate the rapid convergence of the path-following interior-point methods using both data from a small animal scanner and Monte Carlo simulated data. The proposed methods can readily be applied to solve the regularized, weighted least squares reconstruction problem.  相似文献   

5.
This paper presents an integrated method to identify an object pattern from an image, and track its movement over a sequence of images. The sequence of images comes from a single perspective video source, which is capturing data from a precalibrated scene. This information is used to reconstruct the scene in three-dimension (3-D) within a virtual environment where a user can interact and manipulate the system. The steps that are performed include the following: i) Identify an object pattern from a two-dimensional perspective video source. The user outlines the region of interest (ROI) in the initial frame; the procedure builds a refined mask of the dominant object within the ROI using the morphological watershed algorithm. ii) The object pattern is tracked between frames using object matching within the mask provided by the previous and next frame, computing the motion parameters. iii) The identified object pattern is matched with a library of shapes to identify a corresponding 3-D object. iv) A virtual environment is created to reconstruct the scene in 3-D using the 3-D object and the motion parameters. This method can be applied to real-life application problems, such as traffic management and material flow congestion analysis.  相似文献   

6.
A full-wave method for the investigation of microstrip and coplanar structures including 3-D metallization structures is presented. The spectral-domain analysis method is used to calculate the S-parameters of unshielded microwave components containing bond-wires and air-bridges. The general formulation and the implementation procedure of the method are described. The application of the theory is given by a comparison of measured and calculated results for a spiral inductor, including an air-bridge  相似文献   

7.
The task of recovering three-dimensional (3-D) geometry from two-dimensional views of a scene is called 3-D reconstruction. It is an extremely active research area in computer vision. There is a large body of 3-D reconstruction algorithms available in the literature. These algorithms are often designed to provide different tradeoffs between speed, accuracy, and practicality. In addition, even the output of various algorithms can be quite different. For example, some algorithms only produce a sparse 3-D reconstruction while others are able to output a dense reconstruction. The selection of the appropriate 3-D reconstruction algorithm relies heavily on the intended application as well as the available resources. The goal of this paper is to review some of the commonly used motion-parallax-based 3-D reconstruction techniques and make clear the assumptions under which they are designed. To do so efficiently, we classify the reviewed reconstruction algorithms into two large categories depending on whether a prior calibration of the camera is required. Under each category, related algorithms are further grouped according to the common properties they share.  相似文献   

8.
Statistical bias in 3-D reconstruction from a monocular video.   总被引:1,自引:0,他引:1  
The present state-of-the-art in computing the error statistics in three-dimensional (3-D) reconstruction from video concentrates on estimating the error covariance. A different source of error which has not received much attention is the fact that the reconstruction estimates are often significantly statistically biased. In this paper, we derive a precise expression for the bias in the depth estimate, based on the continuous (differentiable) version of structure from motion (SfM). Many SfM algorithms, or certain portions of them, can be posed in a linear least-squares (LS) framework Ax = b. Examples include initialization procedures for bundle adjustment or algorithms that alternately estimate depth and camera motion. It is a well-known fact that the LS estimate is biased if the system matrix A is noisy. In SfM, the matrix A contains point correspondences, which are always difficult to obtain precisely; thus, it is expected that the structure and motion estimates in such a formulation of the problem would be biased. Existing results on the minimum achievable variance of the SfM estimator are extended by deriving a generalized Cramer-Rao lower bound. A detailed analysis of the effect of various camera motion parameters on the bias is presented. We conclude by presenting the effect of bias compensation on reconstructing 3-D face models from rendered images.  相似文献   

9.
Three-dimensional (3-D) scene reconstruction from broadcast video is a challenging problem with many potential applications, such as 3-D TV, free-view TV, augmented reality or three-dimensionalization of two-dimensional (2-D) media archives. In this paper, a flexible and effective system capable of efficiently reconstructing 3-D scenes from broadcast video is proposed, with the assumption that there is relative motion between camera and scene/objects. The system requires no a priori information and input, other than the video sequence itself, and capable of estimating the internal and external camera parameters and performing a 3-D motion-based segmentation, as well as computing a dense depth field. The system also serves as a showcase to present some novel approaches for moving object segmentation, sparse and dense reconstruction problems. According to the simulations for both synthetic and real data, the system achieves a promising performance for typical TV content, indicating that it is a significant step towards the 3-D reconstruction of scenes from broadcast video.  相似文献   

10.
提出了一种把矩阵分解应用于雷达目标的逆合成孔径雷达成像(ISAR)三维重构的方法。通过对目标运动场景建模,将目标的ISAR成像过程化,推导出图像序列中散射点二维位置坐标与原目标三维坐标的投影矩阵关系,利用正交投影下的矩阵分解基本方法,从观测矩阵中分解出原目标散射点的三维位置矩阵,进而实现目标的三维位置重构,仿真结果验证了该方法的有效性。  相似文献   

11.
研究各种细胞器的三维形态,进而结合各种生物标记技术研究功能蛋白在细胞或细胞器中的空间分布,对于了解功能蛋白的功能和机理具有重要的价值。早在1954年,Gay和Anderson就进行了连续细胞水平的超薄切片的三维重构的工作。1974年,sjophistmnd将连续切片的三维重构分辨率提高到了  相似文献   

12.
An efficient Gauss-Newton iterative imaging technique utilizing a three-dimensional (3-D) field solution coupled to a two-dimensional (2-D) parameter estimation scheme (3-D/2-D) is presented for microwave tomographic imaging in medical applications. While electromagnetic wave propagation is described fully by a 3-D vector field, a 3-D scalar model has been applied to improve the efficiency of the iterative reconstruction process with apparently limited reduction in accuracy. In addition, the image recovery has been restricted to 2-D but is generalizable to three dimensions. Image artifacts related primarily to 3-D effects are reduced when compared with results from an entirely two-dimensional inversion (2-D/2-D). Important advances in terms of improving algorithmic efficiency include use of a block solver for computing the field solutions and application of the dual mesh scheme and adjoint approach for Jacobian construction. Methods which enhance the image quality such as the log-magnitude/unwrapped phase minimization were also applied. Results obtained from synthetic measurement data show that the new 3-D/2-D algorithm consistently outperforms its 2-D/2-D counterpart in terms of reducing the effective imaging slice thickness in both permittivity and conductivity images over a range of inclusion sizes and background medium contrasts.  相似文献   

13.
提出一种在双目视觉系统下进行人脸重建的方法。首先,通过双目系统拍摄人脸的左右图像;其次,用Grab-Cut的方法的把人脸图像分割出来从而降低立体匹配的搜索范围;然后,用区域匹配算法得到人脸的视差图,从而得到人脸的三维点云;最后对不同角度的人脸图像进行SIFT特征提取和匹配。将提取的SIFT特征点和匹配关系反射到三维点云数据,获取不同角度人脸的三维点云数据的特征点和匹配关系,完成对不同角度的人脸进行粗配准。  相似文献   

14.
In this paper, a new method for the estimation of seabed elevation maps from side-scan sonar images is presented. The side-scan image formation process is represented by a Lambertian diffuse model, which is then inverted by a multiresolution optimization procedure inspired by expectation-maximization to account for the characteristics of the imaged seafloor region. On convergence of the model, approximations for seabed reflectivity, side-scan beam pattern, and seabed altitude are obtained. The performance of the system is evaluated against a real structure of known dimensions. Reconstruction results for images acquired by different sonar sensors are presented. Applications to augmented reality for the simulation of targets in sonar imagery are also discussed.  相似文献   

15.
In this letter, the limitation of the conventional Lambertian reflectance model is addressed and a new neural-based reflectance model is proposed of which the physical parameters of the reflectivity under different lighting conditions are interpreted by the neural network behavior of the nonlinear input-output mapping. The idea of this method is to optimize a proper reflectance model by a neural learning algorithm and to recover the object surface by a simple shape-from-shading (SFS) variational method with this neural-based model. A unified computational scheme is proposed to yield the best SFS solution. This SFS technique has become more robust for most objects, even when the lighting conditions are uncertain.  相似文献   

16.
In this paper, we propose a new wavelet-based reconstruction method suited to three-dimensional (3-D) cone-beam (CB) tomography. It is derived from the Feldkamp algorithm and is valid for the same geometrical conditions. The demonstration is done in the framework of nonseparable wavelets and requires ideally radial wavelets. The proposed inversion formula yields to a filtered backprojection algorithm but the filtering step is implemented using quincunx wavelet filters. The proposed algorithm reconstructs slice by slice both the wavelet and approximation coefficients of the 3-D image directly from the CB projection data. The validity of this multiresolution approach is demonstrated on simulations from both mathematical phantoms and 3-D rotational angiography clinical data. The same quality is achieved compared with the standard Feldkamp algorithm, but in addition, the multiresolution decomposition allows to apply directly image processing techniques in the wavelet domain during the inversion process. As an example, a fast low-resolution reconstruction of the 3-D arterial vessels with the progressive addition of details in a region of interest is demonstrated. Other promising applications are the improvement of image quality by denoising techniques and also the reduction of computing time using the space localization of wavelets.  相似文献   

17.
Optimal CT scanning plan for long-bone 3-D reconstruction   总被引:1,自引:0,他引:1  
Digital computed tomographic (CT) data are widely used in three-dimensional (3-D) construction of bone geometry and density features for 3-D modelling purposes. During in vivo CT data acquisition the number of scans must be limited in order to protect patients from the risks related to X-ray absorption. The aim of this work is to automatically define, given a finite number of CT slices, the scanning plan which returns the optimal 3-D reconstruction of a bone segment from in vivo acquired CT images. An optimization algorithm based on a Discard-Insert-Exchange technique has been developed. In the proposed method the optimal scanning sequence is searched by minimizing the overall reconstruction error of a two-dimensional (2-D) prescanning image: an anterior-posterior (AP) X-ray projection of the bone segment. This approach has been validated in vitro on 3 different femurs. The 3-D reconstruction errors obtained through the optimization of the scanning plan on the 3-D prescanning images and on the corresponding 3-D data sets have been compared. 2-D and 3-D data sets have been reconstructed by linear interpolation along the longitudinal axis. Results show that direct 3-D optimization yields root mean square reconstruction errors which are only 4%-7% lower than the 2-D-optimized plan, thus proving that 2-D-optimization provides a good suboptimal scanning plan for 3-D reconstruction. Further on, 3-D reconstruction errors given by the optimized scanning plan and a standard radiological protocol for long bones have been compared. Results show that the optimized plan yields 20%-50% lower 3-D reconstruction errors  相似文献   

18.
19.
A novel 3-D subsurface radar imaging technique   总被引:5,自引:0,他引:5  
The problem of the formation of subsurface images using stand-off forward looking radar is by far more severe than that of forming the radar images in the free-space. A subsurface image needs to be accurately focused taking into account both the refraction and dispersion of the wavefield. This paper presents a novel imaging algorithm specially tailored for subsurface sensing. A simple and effective characterization technique for the retrieval of the dielectric permittivity is outlined. The proposed soil characterization and subsurface imaging techniques are validated experimentally. Results show that the geometric distortion in the subsurface images due to the refraction and dispersion of the wavefields is successfully corrected  相似文献   

20.
基于图形理解的室内建筑三维重建算法   总被引:1,自引:0,他引:1       下载免费PDF全文
根据室内建筑行业特有的视图表示规则,提出了一种基于理解的室内建筑物三维重建方法。该方法结合室内建筑制图规则、图形识别理解技术和人工智能知识,通过基于特征抽取的识别算法,完成对室内建筑结构图中墙体中线的提取,进而获得整个建筑物墙体的拓扑结构;然后对室内建筑结构图中2种重要的建筑构件:门和窗户进行辨识;最后实现室内建筑物的三维重建。实验结果表明,在少量人机交互的基础上,该方法对实际的建筑图是十分有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号