首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This article examines a compact dielectric resonator antenna (DRA) for UWB applications. Here a composite feeding structure excites a dielectric resonator which in tern provides the resonant modes TE111, TE121, TE212, and TE222. The dielectric resonator (DR), built of alumina ceramic (εr, DR = 9.8), is mounted on a fractal triangular patch, inspired by Sierpinski Gasket. The suggested DRA is supported by a FR4 substrate (εr, sub = 4.4) and measures compactly 40 × 30 × 8.5 mm3. To confirm the results of its simulations, the proposed antenna's prototype is prepared and measured up to the second iteration. The measured outcome demonstrates that the suggested antenna has a frequency range of 3.38–10.71 GHz (104%) for S11 < −10 dB and provides a maximum gain of 7.23 dBi at 8 GHz along with highest possible simulated efficiency of 98%. The suggested DRA is appropriate for small-range future 4G/5G UWB wireless multimedia applications due to its ultrawide bandwidth, excellent gain, reasonable efficiency, omnidirectional radiation features, and compact construction. This DRA is also suitable for repeaters of mobile and vehicular communications.  相似文献   

2.
A dielectric resonator antenna (DRA) is placed on top of a slotted cavity to form a hybrid dual-band antenna. The zonal slot cut onto the cavity is fed by an embedded L-probe, whereas the DRA is fed by a coupling rectangular slot cut on the top face of the cavity. It is found that the resonance frequencies of the zonal slot and DRA are primarily dependent on the zonal slot and the DRA, respectively, which greatly facilitates the dual-band design. To demonstrate the idea, the proposed hybrid dual-band antenna is designed for IEEE802.11a/b WLAN applications. The reflection coefficient, radiation pattern, and gain of the dual-band antenna are studied, and the simulation and measurement are in reasonable agreement. A parametric study of the proposed configuration was carried out to characterize the antenna.  相似文献   

3.
A rectangular dielectric resonator antenna (DRA) was studied theoretically and experimentally. The rectangular DRA is excited by a strip, which is compatible with a coaxial probe. Both linearly polarized (LP) and circularly polarized (CP) fields of the antenna are considered. In previous studies of the LP rectangular DRA, only the fundamental TE/sub 111/ mode has received much attention. In this paper, it is found that the fundamental TE/sub 111/ mode, together with the higher-order TE/sub 113/ mode, can be used to design a wide-band LP DRA. The bandwidth of the dual-mode DRA can be over 40% for a conventional rectangular DRA with a simple feed. For the CP mode, a parasitic patch is attached on a side wall of the DRA to excite a degenerate mode. In both the LP and CP cases, the finite-difference time-domain (FDTD) method is used to analyze the problems. The results agree reasonably with measurements.  相似文献   

4.
A new design of circularly polarised slot fed dielectric resonator antenna (DRA) is presented. The dissymmetry of the design enabling circular polarisation relies on a metallic strip printed on top of the resonator. Simulations are compared with measurements for a single antenna as well as a four DRA sequential rotation array  相似文献   

5.
We investigate circular sector and annular sector dielectric resonator antenna (DRA) geometries. The advantage these geometries offer, compared to conventional circular cylindrical DRAs are significant reductions in volume, making them potential candidates for use in compact applications such as mobile communication handsets. Approximate theory, simulation, and experimental results are provided to support the findings. In particular, a sector DRA is demonstrated to have 75% less volume than a conventional cylindrical DRA, with the same resonant frequency. The DRA volume minimization for compact antenna design is also discussed and a design is proposed and tested for a mobile telephone handset suitable for the DCS1800 system  相似文献   

6.
The aperture-coupled hemispherical dielectric resonator antenna (DRA) with a parasitic patch is studied rigorously. Using the Green's function approach, integral equations for the unknown patch and slot currents are formulated and solved using the method of moments. The theory is utilized to design a circularly polarized (CP) DRA and a wide-band linearly polarized (LP) DRA. In the former, the CP frequency and axial ratio (AR) can easily be controlled by the patch location and patch size, respectively, with the impedance matched by varying the slot length and microstrip stub length. It is important that the AR will not be affected when the input impedance is tuned, and the CP design is therefore greatly facilitated. For the wide-band LP antenna, a maximum bandwidth of 22% can be obtained, which is much wider than the previous bandwidth of 7.5% with no parasitic patches. Finally, the frequency-tuning characteristics of the proposed antenna are discussed. Since the parasitic patch can be applied to any DRAs, the method will find applications in practical DRA designs.  相似文献   

7.
A soldered-through probe is used to excite the dielectric resonator antenna (DRA). A cylindrical ring DRA is used to demonstrate the feasibility of this excitation method. The return loss, radiation pattern, and antenna gain of the new configuration are studied  相似文献   

8.
The proposed technique is an integration of a slot antenna and a dielectric resonator antenna (DRA). This is designed without compromising miniaturisation and efficiency. It is observed that the integration of slot and dielectric structure itself may be merged to achieve extremely wide bandwidth over which the antenna polarisation and radiation pattern are preserved. Here the effect of slot size on the radiation performance of the DRA is studied. The antenna structure is simulated using the CST software. The simulated results are presented and compared with the measured result. This DRA has a gain of 7.1 and 6.3?dBi at 5.7 and 8.1?GHz, respectively, its 10?dB return impedance bandwidth of nearly 4.5% and 5.5% at two resonating frequencies. A total of 98% efficiency has been achieved from the configuration. It is shown that the size of the slot can significantly affect the radiation properties of the DRA and there are good agreements between simulation and measured results.  相似文献   

9.
Tam  M.T.K. Murch  R.D. 《Electronics letters》1997,33(23):1914-1916
The authors demonstrate that the volume of a conventional dielectric resonator antenna (DRA) can be reduced by approximately half. The technique relies on employing an additional conducting plate in the DRA, which acts as an electric wall. Experimental and simulation results are provided for cylindrical and rectangular dielectric resonator antenna designs  相似文献   

10.
A new dielectric resonator antenna (DRA) with reduced size for WLAN applications is presented. The proposed antenna consists of a rectangular dielectric resonator with partial vertical and horizontal metallisations which is coupled to a microstrip line through a rectangular aperture in the ground plane. A 9.6 reduction coefficient is obtained compared to the volume of an equivalent isolated DRA. An experimental 12% bandwidth is also achieved in spite of the compact size.  相似文献   

11.
A dielectric resonator antenna (DRA) is formed by perforating a dielectric substrate with a lattice of holes. The performance of several perforated DRA prototypes is compared to a conventional DRA and the results demonstrate better gain and cross-polarisation levels. This technique of fabricating DRAs using perforations is intended for array applications, eliminating the need to position and bond individual elements.  相似文献   

12.
A wideband hybrid dielectric resonator antenna (DRA) is investigated experimentally. The proposed hybrid DRA comprises a rectangular dielectric resonator and a conductor-backed coplanar waveguide (CB-CPW) slot etched on a small ground plane. Dual resonances of the two radiators are merged to expand the antenna bandwidth. By utilising the CB-CPW structure, a back-cavity is formed underneath the slot to suppress the backward radiation. Hence consistent unidirectional radiation pattern is achieved across the matching band.  相似文献   

13.
For the first time, the idea of using the dielectric resonator antenna (DRA) as an oscillator load, named as DRAO, is presented in this paper. Unlike the conventional dielectric resonator oscillator (DRO), where the DR was merely used as a resonator, the DR here serves as both the radiating and oscillating loads. In addition, a compact tri-function hollow DR that incorporates the packaging function to the above dual function is demonstrated. The design procedures of the dual- and tri-function DRAOs are discussed. For demonstration, the DRAOs are designed at 1.85 GHz, which is used in the popular personal communications system (PCS). The return losses, input impedances, antenna gains, signal spectrums, phase noise, and radiation patterns of the two DRAOs are presented. It is shown that the loaded QL factor of the DRA can be increased by internally embedding a compact metallic cavity to the DR. It is found that with a higher loaded QL factor, the phase noise of the antenna oscillator using the hollow DRA (tri-function DRAO) is better than that using a solid DRA (dual-function DRAO).  相似文献   

14.
A two-stage method of auxiliary sources (MAS) technique is proposed for analysis of dielectric resonator antenna (DRA) elements and arrays on finite ground planes (FGPs). The problem is solved by first analysing the DRA on an infinite ground plane (IGP) and then using this solution to model the FGP problem  相似文献   

15.
《Electronics letters》2008,44(20):1176-1177
A new dielectric resonator antenna (DRA) is introduced for wideband applications, where the wideband of this DRA design comes from three factors: a compact cross-T-shaped dielectric resonator, a conformal inverted-trapezoid patch as a feed mechanism, and a copper-clad substrate as a baseboard. Measured results demonstrate that the proposed DRA achieves an impedance bandwidth of about 71.8% for VSWR les 2, covering a frequency range from 3.56 to 7.57 GHz. This antenna also provides a stable broadside radiation pattern and a gain range of 3.2-7.3 dBi across the operating bandwidth.  相似文献   

16.
In this paper, a low-profile wideband dielectric resonator antenna(DRA) with a very compact planar size is investigated. The antenna consists of a high permittivity dielectric sheet on the top, a low permittivity substrate in the middle, and a probe feeding structure at the bottom. By digging an annular slot in the designated area of the square dielectric sheet, the resonant frequency of fundamental TE111 mode can be effectively increased to be close to the high-order TE131 mode. The two modes c...  相似文献   

17.
Circularly polarized (CP) dielectric resonator antenna (DRA) subarrays have been numerically studied and experimentally verified. Elliptical CP DRA is used as the antenna element, which is excited by either a narrow slot or a probe. The elements are arranged in a 2 by 2 subarray configuration and are excited sequentially. In order to optimize the CP bandwidth, wideband feeding networks have been designed. Three different types of feeding network are studied; they are parallel feeding network, series feeding network and hybrid ring feeding network. For the CP DRA subarray with hybrid ring feeding network, the impedance matching bandwidth (S11<-10 dB) and 3-dB AR bandwidth achieved are 44% and 26% respectively  相似文献   

18.
In this paper, a low profile dielectric resonator antenna (DRA) is proposed and investigated. To achieve the broad impedance bandwidth the proposed antenna geometry combines the dielectric resonator antenna and an underlying microstrip-fed slot with a narrow rectangular notch, which effectively broadens the impedance bandwidth by merging the resonances of slot and DRA. The physical insight gained by the detailed parametric study has led to find out a set of guidelines for designing the antennas for any particular frequency band. The design guidelines have been verified by simulating a set of antennas designed for different frequency bands. For validation, a prototype antenna is fabricated and tested experimentally. The measured results show that the proposed DRA offers an impedance bandwidth of about \(125.34\%\) from 1.17 to 5.1 GHz with reasonable gain between 3.5 and 5.7 dBi. The volume of the proposed DRA is \(0.16\lambda _{dr}^{3}\), where \(\lambda _{dr}\) is the wavelength at center operating frequency of the DR. A comprehensive study on bandwidth shows that the proposed DRA provides maximum bandwidth in terms of the DR volume (\(\hbox {BW}/V_{dr}\)) and the DR height (\(\hbox {BW}/h_{dr}\)) than the other similar reported work on hybrid wideband DRA designs.  相似文献   

19.
A novel high gain and broadband hybrid dielectric resonator antenna (DRA) is designed and experimentally validated. To obtain the wide impedance bandwidth, the proposed antenna geometry combines the dielectric resonator antenna and an underlying slot with a narrow rectangular notch, which effectively broadens the impedance bandwidth by merging the resonances of the slot and DRA. An inverted T-shaped feed line is used to excite both antennas, simultaneously. It supports amalgamation of different resonant modes of the both, DRA and slot antenna. The measured results show that the proposed antenna offers an impedance bandwidth of 120% from 1.67 to 6.7 GHz. The antenna gain is next enhanced by a reflector placed below the antenna at an optimum distance. On engineering the height and dimension of this reflector the antenna gain is improved from 2.2 dBi to 8.7 dBi at 1.7 GHz. Finally, antenna operation is attested experimentally with a rectifier circuit in the frequency range of 1.8–3.6 GHz, where various strong radio signals are freely available for RF energy harvesting. The measured maximum efficiency of the rectifier and rectenna circuit were found to be 74.4% and 61.4%, respectively.  相似文献   

20.
The broadband, narrow width, rectangular dielectric resonator antenna (RDRA) of aluminum nitride (εr=8.6) was designed and the effect of inclusion of air gap at the bottom of the dielectric resonator antenna (DRA), above the ground plane, was investigated. Gain around 7 dBi was obtained for DRA with air gap (DRAAG) over a broad bandwidth in upper X, Ku, and K bands. Further enhancement in gain could be obtained by placing a metal wall parallel to the length of DRA. However, due to the presence of metal wall, bandwidth was reduced. These structures with the metal wall are capable of operating over a wide band extending from Ku band to lower K band with the gain of around 10 dBi. CST Microwave Studio Software was used to simulate all these structures. Performance parameters of DRA with air gap were compared with several broadband DRA structures reported in recent literature. The proposed DRAAG with the metal wall in this paper is capable of operating over a wide bandwidth along with a significant gain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号