首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The quaternary In0.52(AlxGa1-x) 0.48As compound on InP substrates is an important material for use in optoelectronic and microwave devices. We systematically investigated the electrical properties of quaternary In0.52(AlxGa1-x)0.48As layers, and found a 10% addition of Ga atoms into the InAlAs layer improves the Schottky diode performance. The energy bandgap (Eg ) for the In0.52(AlxGa1-x)0.48As layer was (0.806+0.711x) eV, and the associated conduction-band discontinuity (ΔEc), in the InAlGaAs/In0.53Ga0.47 As heterojunction, was around (0.68±0.01)ΔEg . Using this high quality In0.52(Al0.9Ga0.1)0.48As layer in the Schottky and buffer layers, we obtained quaternary In0.52(Al0.9Ga0.1)0.48As/In 0.53Ga0.47As HEMTs. This quaternary HEMT revealed excellent dc and microwave characteristics. In comparison with the conventional InAlAs/InGaAs HEMT's, quaternary HEMT's demonstrated improved sidegating and device reliability  相似文献   

2.
The rate of emission of electrons from an inversion layer at the interface between p-type GaAs and undoped AlxGa1-xAs (x=0.38) is measured using a transient capacitance technique at temperatures from 49.8 to 84.4 K and at various gate biases. A model based on physical mechanisms is developed that accurately describes the inversion charge leakage. The model parameters are adjusted within their limits of uncertainty to obtain the optimal fit of present theory to experiment. The fit results in estimation of δEc=0.28 eV and tunneling effective mass m*=0.08 mO, for Al0.38 Ga0.62As. The model is used to predict the storage characteristics of similar devices with lower GaAs doping and with an alternate barrier material  相似文献   

3.
The authors report the DC and RF performance of nominally 0.2-μm-gate length atomic-planar doped pseudomorphic Al0.3Ga0.7As/In0.25Ga0.75As modulation-doped field-effect transistors (MODFETs) with fT over 120 GHz. The devices exhibit a maximum two-dimensional electron gas (2 DEG) sheet density of 2.4×1012 cm-2, peak transconductance g m of 530-570 mS/mm. maximum current density of 500-550 mA/mm, and peak current-gain cutoff frequency fT of 110-122 GHz. These results are claimed to be among the best ever reported for pseudomorphic AlGaAs/InGaAs MODFETs and are attributed to the high 2 DEG sheet density, rather than an enhanced saturation velocity, in the In0.25Ga0.75As channel  相似文献   

4.
In0.52Al0.48As/In0.53Ga0.47 As/InP heterostructure insulated-gate field-effect transistors (HIGFETs) with gate lengths from 1.1 and 0.3 μm have been fabricated, and their electrical performance is characterized at DC and microwave frequencies. The refractory-gate self-aligned process, applied to devices with In0.53Ga0.47As channels, yields an unprecedented combination of very-high speed and excellent uniformity. HIGFETs with Lg=0.6 μm showed average peak transconductance gm of 528 mS/mm and unity-current-gain cutoff frequency ft of 50 GHz. The uniformity of gm was better than 1%, and the voltage of the gm peak was uniform to ±30 mV. HIGFETs with Lg=0.3 μm showed f1 up to 63 GHz, but suffered from serious short-channel effect, due to excessive thickness of the InGaAs channel layer. A self-aligned technique for gate resistance reduction is shown to substantially improve microwave power gain  相似文献   

5.
In0.5(AlxGa1-x)0.5 high electron-mobility transistors (HEMTs) are expected to have higher two-dimensional electron gas density and larger current drive capability than both Al0.23Ga0.77As and In0.5Ga 0.5P HEMTs due to the improved conduction-band offsets. In this paper, we performed a systematic investigation of the electrical properties of In0.5(AlxGa1-x)0.5 P (0⩽x⩽1) material system lattice matched to GaAs. By considering the conduction-band offset, direct-to-indirect-band electron transfer, donor-related deep levels, and Schottky barrier height, a relatively narrow range of the Al content 0.2⩽x⩽0.3 was found to be the optimum for the design of In0.5(AlxGa1-x)0.5 HEMTs. Under 1.2-V operation, power transistors with the optimum aluminum composition show high drain current density, high transconductance, and excellent power-added efficiency (65.2% at 850 MHz). These results demonstrate that InAlGaP HEMTs are promising candidates for high-efficiency low-voltage power applications  相似文献   

6.
The design and performance of In0.53Ga0.47As/In0.52Al0.48 As modulation-doped field-effect transistors (MODFETs) have been optimized by incorporating a single In0.53Ga0.47As quantum-well channel and a thin strained GaAs gate barrier layer. These help to lower the output conductance and gate leakage current of the device, respectively. The DC performance of 1-μm-gate devices is characterized by extrinsic transconductances of 320 mS/mm at 300 K and 450 mS/mm at 77 K and a best value of fT=35 GHz is derived from S-parameter measurements  相似文献   

7.
The effect of hot-electron injection energy (Ei) into the base on the high-frequency characteristics of In0/52(Ga1-xAlx)0.48 As/InGaAs abrupt heterojunction bipolar transistors (HBTs) is investigated by changing the composition of the emitter. There exists an optimum Ei at which a maximum current gain cutoff frequency (ft) is obtained. Analysis of hot-electron transport in the base and collector by Monte Carlo simulation is carried out to understand the above phenomenon. The collector transit time (τc ) increases with Ei, because electrons with higher energy transfer from the Γ valley into the upper L and X valleys. At first, the base transit time (τb ) decreases with Ei at the low Ei region. However, τb does not decrease monotically with Ei, because of the nonparabolicity in the energy-band structure of InGaAs. Consequently, there exists a minimum in the sum of τb and τc , in other words a maximum ft, at an intermediate value of Ei  相似文献   

8.
An In0.41Al0.59As/n+-In0.65 Ga0.35As HFET on InP was designed and fabricated, using the following methodology to enhance device breakdown: a quantum-well channel to introduce electron quantization and increase the effective channel bandgap, a strained In0.41Al0.59As insulator, and the elimination of parasitic mesa-sidewall gate leakage. The In0.65Ga0.35As channel is optimally doped to ND=6×1018 cm-3. The resulting device (Lg=1.9 μm, Wg =200 μm) has ft=14.9 GHz, fmax in the range of 85 to 101 GHz, MSG=17.6 dB at 12 GHz VB=12.8 V, and ID(max)=302 mA/mm. This structure offers the promise of high-voltage applications at high frequencies on InP  相似文献   

9.
Temperature-dependent measurements from 25 to 125°C have been made of the DC I-V characteristics of HBTs with GaAs and In0.53Ga0.47As collector regions. It was found that the GaAs HBTs have very low output conductance and high collector breakdown voltage BVCEO>10 V at 25°C, which increases with temperature. In striking contrast, the In0.53Ga0.47As HBTs have very high output conductance and low BVCEO~2.5 V at 25°C, which actually decreases with temperature. This different behavior is explained by the >104 higher collector leakage current, ICO, in In0.53Ga0.47As compared to GaAs due to bandgap differences. It is also shown that device self-heating plays a role in the I-V characteristics  相似文献   

10.
An N-Al0.5Ga0.5As/n-GaAs heterostructure-emitter bipolar transistor (HEBT), grown by MBE, has been fabricated with improved performance. The Al0.5Ga0.5As layer with higher valence-band offset ΔEv offers better confinement of minority carriers (holes). A small offset voltage of about 80 mV and a high common-emitter current gain of 180 were measured for large-area devices. On the other hand, the adequate design of an n-GaAs emitter layer also plays an important role in device performance. The strongly knee-shaped characteristics and reachthrough effect were observed in those devices fabricated with 12 a thin n-GaAs emitter layer  相似文献   

11.
Sidegating effects in InAlAs/InGaAs heterostructure field effect transistors (HFETs) were experimentally investigated. Two different configurations of gate feeder across the mesa edges are compared in In 0.52Al0.48As/In0.53Ga0.47As. HFETs. HEMTs and heterostructure insulated-gate FETs (HIGFETs) were fabricated, each with different gate-feeder configurations. HFETs with the gate air bridge over the mesa edge can maintain 99% of the drain-source (Ids) current level at sidegate voltages (Vsg) extending up to -30 V, while the non-air-bridge configuration of HFETs show a 30% drop of Ids at the same V sg. This significant discrepancy of sidegating effect is attributed to depletion region modulation at the mesa edge below the gate feeder. By lifting the gate feeder above the mesa step, sidegating is reduced, which suggests the channel/substrate trap effects are negligibly small. The role of air-bridge structures in determining the sidegating characteristics is discussed  相似文献   

12.
In0.5(Al0.3Ga0.7)0.5 P/In0.2Ga0.8As single- and double-heterojunction pseudomorphic high electron mobility transistors (SH-PHEMTs and DH-PHEMTs) on GaAs grown by gas-source molecular beam epitaxy (GSMBE) were demonstrated for the first time. SH-PHEMTs with a 1-μm gate-length showed a peak extrinsic transconductance gm of 293 mS/mm and a full channel current density Imax of 350 mA/mm. The corresponding values of gm and Imax were 320 mS/mm and 550 mA/mm, respectively, for the DH-PHEMTs. A short-circuit current gain (H21) cutoff frequency fT of 21 GHz and a maximum oscillation frequency fmax of 64 GHz were obtained from a 1 μm DH device. The improved device performance is attributed to the large ΔEc provided by the In0.5(Al0.3Ga0.7)0.5P/In 0.2Ga0.8As heterojunctions. These results demonstrated that In0.5(Al0.3Ga0.7)0.5P/In 0.2Ga0.8As PHEMT's are promising candidates for microwave power applications  相似文献   

13.
In a visible-light laser using In0.5(Ga1-xAl x)0.5P (0⩽x⩽1), the conduction-band discontinuity at the interface between the active layer and clad layer is not large enough to strongly suppress carriers overflowing into the clad layer, unlike in the GaAlAs system. A multiquantum barrier (MQB) is used to overcome this problem, and the electron-reflecting powers are calculated to determine the characteristics of this suppression. Electron-reflecting powers are calculated for a high-power, high-temperature laser with an In0.5 Ga0.5P active layer, an In0.5Ga0.15 clad layer, and a set of superposed MQBs, and for a short-wavelength (λ:586-nm) laser composed of an In0.5Ga0.33Al0.17P active layer, an In 0.5Ga0.15Al0.35P clad layer, and a set of superposed MQBs  相似文献   

14.
By studying thermal behavior of all-MBE surface-emitting lasers, barrier heights and optimum cavity design parameters are obtained. The barrier heights for holes between hetero-interfaces of Al0.3Ga0.7As-Al0.65Ga0.35As and AlAs-Al0.65Ga0.35As (Δx=-0.35) are measured to be 77 meV at zero bias for the deep-red top-surface-emitting laser. The barrier height decreases linearly with forward bias voltage, explaining the nonlinearity in current-voltage characteristics of the top-surface-emitting laser. The contribution of electrons to electrical resistance is estimated to be negligibly small compared to that of holes for the structure consisting of Δx =0.35. Minimum threshold current and maximum differential quantum efficiency observed around 200 K indicate slight mismatch between gain maximum and Fabry-Perot resonance for the deep-red top-surface-emitting laser  相似文献   

15.
We investigated 60-nm In0.52Al0.48As/In0.53Ga0.47As pseudomorphic high-electron mobility transistors (p-HEMTs) fabricated by using a Ne-based atomic-layer-etching (ALET) technology. The ALET process produced a reproducible etch rate of 1.47 Aring/cycle for an InP etch stop layer, an excellent InP etch selectivity of 70 against an In0.52Al0.48As barrier layer, and an rms surface-roughness value of 1.37 Aring for the exposed In0.52Al0.48As barrier after removing the InP etch stop layer. The application of the ALET technology for the gate recess of 60-nm In0.52Al0.48As/In0.53Ga0.47As p-HEMTs produced improved device parameters, including transconductance (GM), cutoff frequencies (fT)> and electron saturation velocity (vsat) in the channel layer, which is mainly due to the high etch selectivity and low plasma-induced damage to the gate area. The 60-nm In0.52Al0.48As/In0.53Ga0.47As p-HEMTs fabricated by using the ALET technology exhibited GM,Max = 1-17 S/mm, fT = 398 GHz, and vsat = 2.5 X 107 cm/s.  相似文献   

16.
We have experimentally studied the suitability of nanometer-scale In0.7Ga0.3As high-electron mobility transistors (HEMTs) as an n-channel device for a future high-speed and low-power logic technology for beyond-CMOS applications. To this end, we have fabricated 50- to 150-nm gate-length In0.7Ga0.3As HEMTs with different gate stack designs. This has allowed us to investigate the role of Schottky barrier height (PhiB) and insulator thickness (tins) on the logic characteristics of In0.7Ga0.3As HEMTs. The best 50-nm HEMTs with the highest PhiB and the smallest tins exhibit an ION/IOFF ratio in excess of 104 and a subthreshold slope (S) below 86 mV/dec. These nonoptimized 50-nm In0.7Ga0.3As HEMTs also show a logic gate delay (CV/I) of around 1 ps at a supply voltage of 0.5 V, while maintaining an ION/IOFF ratio above 104, which is comparable to state-of-the-art Si MOSFETs. As one of the alternatives for beyond-CMOS technologies, we believe that InAs-rich InGaAs HEMTs hold a considerable promise.  相似文献   

17.
An 8-element linear array of single-stage integrating front-end photoreceivers using molecular beam epitaxial (MBE) regrowth was investigated. Each element consisted of a p-i-n In0.53Ga0.47As photodiode integrated with a selectively regrown pseudomorphic In0.65Ga0.35As/In0.52Al0.48 As MODFET. Cutoff frequencies of 1.0-μm discrete regrown MODFETs were ft=24 GHz and fmax=50 GHz. Transconductance of the regrown MODFETs was as high as 495 mS/mm with a current density (Ids) of 250 mA/mm. The 3-dB bandwidth of the photoreceiver was measured to be 1 GHz. The bit rate sensitivity at 1 Gb/s was -31.8 dBm for BER 10-9 using 1.55 μm excitation for a photoreceiver with an anti-reflection coating. The single-stage amplifier exhibited up to 25 dB flatband gain of the photocurrent, and a two-stage amplifier was up to 31 dB of gain. Good uniformity between each photoreceiver element in the array was achieved. Electrical crosstalk between photoreceiver elements was estimated to be ~-34 dB  相似文献   

18.
Polarization-independent phase modulation in In1-xGa xAs/InGaAlAs multiple-quantum-well waveguides is demonstrated for the first time. It is shown that by increasing the Ga fraction and hence the tensile strain in the quantum well the electric-field-induced refractive index change in the TM polarization ΔnTM can be made to approach that in the TE polarization Δn TE. At 1.523 μm, the ratio ΔnTM nTE=1 for x=0.7 with a phase shift coefficient of 17.4°/V-mm was achieved. Polarization independence was maintained over the entire range of reverse bias voltage  相似文献   

19.
The authors report the first demonstration of In0.52Al 0.48As/In0.53Ga0.47As metal-semiconductor-metal (MSM) photodetectors and high-electron-mobility transistors (HEMTs) grown on GaAs substrates by organometallic chemical vapor deposition. Both photodetectors and transistors showed no degradation in performance compared to devices simultaneously grown on InP substrates. The photodetectors exhibited a responsivity of 0.45 A/W and leakage current of 10 to 50 nA. The HEMTs with a gate length of 1.0 μm showed a transconductance as high as 250 mS/mm, and fT and fmax of 25 and 70 GHz, respectively  相似文献   

20.
Monte Carlo methods are used to compare electronic transport and device behavior in n+-AlxGa1-xAs/GaAs modulation-doped field-effect transistors (MODFETs) at 300 K for x =0.10, 0.15, 0.22, 0.30, 0.35, and 0.40. The differences between the x=0.22 and x=0.30 MODFETs with respect to parasitic conduction in AlxGa1-xAs, gate currents, and switching times, are of particular interest. The donor-related deep levels in AlxGa1-xAs, are disregarded by assuming all donors to be fully ionized, and the focus is only on the confinement and transport of the carriers. The following quantities are studied in detail: transfer characteristics (ID versus V G), transconductance (gm), switching speeds (τON), parasitic conduction in AlxGa 1-xAs, gate current (IG), average electron velocities and energies in GaAs and AlxGa1-x As, electron concentration in the device domain, k-space transfer (to low mobility L and X valleys), and details of the real-space transfer process  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号