首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum/alumina composites are used in automotive and aerospace industries due to their low density and good mechanical strength. In this study, compocasting was used to fabricate aluminum-matrix composite reinforced with micro and nano-alumina particles. Different weight fractions of micro (3, 5 and 7.5 wt.%) and nano (1, 2, 3 and 4 wt.%) alumina particles were injected by argon gas into the semi-solid state A356 aluminum alloy and stirred by a mechanical stirrer with different speeds of 200, 300 and 450 rpm. The microstructure of the composite samples was investigated by Optical and Scanning Electron Microscopy. Also, density and hardness variation of micro and nano composites were measured. The microstructure study results revealed that application of compocasting process led to a transformation of a dendritic to a nondendritic structure of the matrix alloy. The SEM micrographs revealed that Al2O3 nano particles were surrounded by silicon eutectic and inclined to move toward inter-dendritic regions. They were dispersed uniformly in the matrix when 1, 2 and 3 wt.% nano Al2O3 or 3 and 5 wt.% micro Al2O3 was added, while, further increase in Al2O3 (4 wt.% nano Al2O3 and 7.5 wt.% micro Al2O3) led to agglomeration. The density measurements showed that the amount of porosity in the composites increased with increasing weight fraction and speed of stirring and decreasing particle size. The hardness results indicated that the hardness of the composites increased with decreasing size and increasing weight fraction of particles.  相似文献   

2.
Aluminum is the best metal for producing metal matrix composites which are known as one of the most useful and high-tech composites in our world. Combining aluminum and nano Al2O3 particles will yield a material with high mechanical properties. Characterization of tribological properties revealed that the presence of nano particles significantly increased wear resistance of the composite. In case of unreinforced Al alloy, the depth of penetration is governed by the hardness of the specimen surface and applied load. But, in case of Al matrix composite, the depth of penetration of the harder asperities of hardened steel disk is primarily governed by the protruded hard ceramic reinforcement. The hard Al2O3 particles act as a protrusion over the matrix, carries a major portion of the applied load and protect the abrasives from penetration into the specimen surface.  相似文献   

3.
The conventional molybdenum alloys, lacking of hard particles enhancing wear property, have relative poor wear resistance though they are widely used in wear parts. To resolve the above question, Mo alloys reinforced by in-situ Al2O3 particles are developed using powder metallurgy method. The in-situ α-Al2O3 particles in molybdenum matrix are obtained by the decomposition of aluminum nitrate after liquid-solid incorporation of MoO2 and Al(NO3)3 aqueous solution. The α-Al2O3 particles well bonded with molybdenum distribute evenly in matrix of Mo alloys, which refine grains of alloys and increase hardness of alloys. The absolute density of alloy increases firstly and then decreases with the increase of Al2O3 content, while the relative density rises continuously. The friction coefficient of alloy, fluctuating around 0.5, is slightly influenced by Al2O3. However, the wear resistance of alloy obviously affected by the Al2O3 particles rises remarkably with the increasing of Al2O3 content. The Al2O3 particles can efficiently resist micro-cutting to protect molybdenum matrix, and therefore enhances the wear resistance of Mo alloy.  相似文献   

4.
A novel two step mixing method including injection of particles into the melt by inert gas and stirring was used to prepare aluminum matrix composites (AMCs) reinforced with Al2O3 particles. Different mass fractions of micro alumina particles were injected into the melt under stirring speed of 300 r/min. Then the samples were extruded with ratios of 1.77 or 1.56. The microstructure observation showed that application of the injection and extrusion processes led to a uniform distribution of particles in the matrix. The density measurements showed that the porosity in the composites increased with increasing the mass fraction of Al2O3 and stirring speed and decreased by extrusion process. Hardness, yield and ultimate tensile strengths of the extruded composites increased with increasing the particle mass fraction to 7%, while for the composites without extrusion they increased with particle mass fraction to 5%.  相似文献   

5.
In this study, a novel sol–gel process has been utilized to fabricate Al2O3/YSZ (6 wt% yttria partially stabilized zirconia) composite coatings on Ni-based superalloy. The green coatings were obtained by electrophoretic deposition (EPD) in a suspension containing aluminium oxide sol, nano-Al2O3 and micro-YSZ particles, and then treated by so-called pressure filtration microwave sintering (PFMS) process. The as-sintered composite coatings were dense, uniform and crack-free and the phases mainly present α-Al2O3, m-ZrO2 and t-ZrO2 as aluminium oxide sol content decreasing. The cyclic oxidation tests at 1000 °C for 200 h demonstrate that both of high-temperature oxidation and spallation resistance for the coated samples were remarkably improved. These beneficial effects could be attributed to the special microstructure that micro-YSZ particles embedded in nano/submicron Al2O3 matrix. Meanwhile, the mechanisms of the inhibition of the oxygen diffusion and thermal match are further discussed.  相似文献   

6.
In this study, Al/Al2O3/WC composites were fabricated via the accumulative roll bonding (ARB) process. Furthermore, the microstructure evolution, mechanical properties, and deformation texture of the composite samples were reported. The results illustrated that when the number of cycles was increased, the distribution of particles in the aluminum matrix improved, and the particles became finer. The microstructure of the fabricated composites after eight cycles of the ARB process showed an excellent distribution of reinforcement particles in the aluminum matrix. Elongated ultrafine grains were formed in the ARB-processed specimens of the Al/Al2O3/WC composite. It was observed that as the strain increased with the number of cycles, the tensile strength, microhardness, and elongation of produced composites increased as well. The results indicated that after ARB process, the overall texture intensity increases and a different-strong texture develops. The main textural component is the Rotated Cube component.  相似文献   

7.
In order to clarify the relationship between the microstructure and the arc erosion behavior of metal-matrix composite, Al2O3/Cu composites with different distributions of Al2O3 particles were prepared by high energy ball milling and powder metallurgy. The effect of milling time on microstructure, properties, and arc erosion behavior of Al2O3/Cu composite was investigated. The results show that the distribution of Al2O3 particles improves significantly with increase of milling time, but Al2O3 particles will be aggregated if milling time is too long. The optimal milling time is 24 h in the range of experiments. A uniform distribution of Al2O3 particles in copper matrix can improve the hardness, electrical conductivity, average breakdown strength, chopping level, and arc life. With improvement in the distribution of Al2O3 particles, the erosion area becomes larger, and the erosion pits become shallower and are dispersed more uniformly.  相似文献   

8.
Coatings of a composite material consisting of an Al-Si matrix reinforced with SiC particles were produced by laser cladding on UNS A03560 cast Al-alloy substrates from mixtures of powders of Al-12 wt.% Si alloy and SiC. The influence of the processing parameters on the microstructure and abrasive wear resistance of the coatings was studied. For an interaction time of 0.08 s and a power density of 330 MW/m2, corresponding to a specific energy of 26 MJ/m2, the interaction between SiC and liquid Al is limited and the reinforcement particles remain essentially undissolved. The coating's microstructure is formed of SiC particles dispersed in a matrix consisting of primary α-Al dendrites and interdendritic α-Al + Si eutectic. For interaction times of 0.3 and 0.45 s and a power density of 193 MW/m2, corresponding to specific energies of 58 and 87 MJ/m2, SiC reacts with molten Al and partially dissolves. The resulting microstructure consists of undissolved SiC particles, found mainly at the bottom of the clad tracks, where the maximum temperature reached during processing is lower, and Al4SiC4 and Si particles dispersed in a matrix of α-Al + Si eutectic. The coatings prepared with higher specific energy (58 MJ/m2) present a hardness of 250 V and an abrasive wear rate in three-body abrasion tests with SiC as abrasive of 1.7 × 10− 4 mm3/m, while those produced with 26 MJ/m2 present a hardness of 120 V and a wear rate of 0.43 × 10− 4 mm3/m. These results show that Al4SiC4 and Si increase the hardness of the material by dispersion hardening but do not contribute to its abrasive wear resistance, because they are softer than the abrasive particles, and confirm that the parameters used to prepare Al-Si-SiC composite coatings by laser cladding must be selected so that only minimal reactions occur between SiC and molten Al.  相似文献   

9.
In the present paper, aluminum bronze-alumina composite coatings have been applied on mild steel substrate using conventional plasma spray and a new route based on cold spray techniques. The microstructure, phase distribution, microhardness, adhesion strength and tribological behavior of the composite coatings, consisting of alumina reinforcing phase distributed in a bronze matrix, were studied. Ball-on-disk dry sliding wear tests, Rubber Wheel tests and Erosion tests were conducted to examine the tribological behavior of the composite coatings. The tribological properties of the bronze coatings were improved by the addition of alumina. Friction coefficient of coatings depends strongly on the reinforcing particles content and spraying process. Wear mechanisms of the composite coatings, such as ploughing and particle delamination, were considered. In the case of abrasive wear test, the wear rate was greatly reduced due to the reinforcing ceramic particles. Relationships between size and volume fraction of the ceramic reinforcement Al2O3 and the wear rate are discussed. On the other hand, erosion wear behavior of coatings with higher bronze content showed the best results.  相似文献   

10.
Aluminium 6061T6 is reinforced with naturally available rock dust particles to fabricate low cost aluminium rock dust composite through powder metallurgy technique. Reinforcement ratio was varied from 0% to 50% whereas size of the particles was kept constant as 20 μm. Mixed powders were compacted at three different pressures from 100 to 200 MPa. Al2O3 ceramic coating was given over the novel composite material by Type III Sulphuric acid hard coating method. Developed composites were tested for microstructure, micro-hardness and wear resistance. SEM micrograph confirms uniform distribution of reinforcement in matrix and a fine ceramic hard coating is observed through optical microscopic images. Micro-hardness increases as reinforcement level increases up to 10%. Wear properties were analysed using pin on disc setup without lubricant and by maintaining three parameters viz load, sliding velocity and sliding distance being unchanged. It was found that composite with 10% rock dust gives better wear resistance than any other compositions. Also incrementing figure is notified for hardness and subsequently wear resisting property too when compacting pressure gets increased. Coated sample exhibits better performance than uncoated composite samples at all compositions and at different levels of compacting pressure.  相似文献   

11.
Alumina particle reinforced 6061 aluminum matrix composites (Al2O3p/6061Al) have excellent physical and chemical properties than those of a traditional metal; however, their poor machinability lead to worse surface quality and serious cutting tool wear. In this study, wire electrical discharge machining (WEDM) is adopted in machining Al2O3p/6061Al composite. In the experiments, machining parameters of pulse-on time were changed to explore their effects on machining performance, including the cutting speed, the width of slit and surface roughness. Moreover, the wire electrode is easily broken during the machining Al2O3p/6061Al composite, so this work comprehensively investigates into the locations of the broken wire and the reason of wire breaking.The experimental results indicate that the cutting speed (material removal rate), the surface roughness and the width of the slit of cutting test material significantly depend on volume fraction of reinforcement (Al2O3 particles). Furthermore, bands on the machined surface for cutting 20 vol.% Al2O3p/6061Al composite are easily formed, basically due to some embedded reinforcing Al2O3 particles on the surface of 6061 aluminum matrix, interrupt the machining process. Test results reveal that in machining Al2O3p/6061Al composites a very low wire tension, a high flushing rate and a high wire speed are required to prevent wire breakage; an appropriate servo voltage, a short pulse-on time, and a short pulse-off time, which are normally associated with a high cutting speed, have little effect on the surface roughness.  相似文献   

12.
In situ nanostructured ceramic matrix composite coating was prepared by reactive plasma spraying micro-sized Al-Fe2O3 composite powders. The microstructure of the composite coating was characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, respectively. The results indicated that the composite coating exhibited dense and crack-free microstructure with a number of spherical α-Fe and γ-Al2O3 nano-grains embedded within equiaxed and columnar FeAl2O4 nano-grains matrix. The composite coating showed markedly higher toughness and wear resistance than the conventional Al2O3 coating.  相似文献   

13.
Aluminum matrix composites reinforced by in situ Al2O3 and Al3Zr particles are fabricated from A356-Zr(CO3)2 system via magnetochemistry reaction, and the morphologies, sizes and distributions of the in situ particles as well as the microstructures, mechanical mechanisms of the composites are investigated by XRD, SEM, TEM and in situ tensile tests. The results indicate that with the pulsed magnetic field assistance, the morphologies of the in situ particles are mainly with ball-shape, the sizes are in nanometer scale and the distributions in the matrix are uniform. The interfaces between the in situ particles and the aluminum matrix are net and no interfacial outgrowth is observed. These are due to the strong vibration induced by the applied magnetic field in the aluminum melt, which in turn, accelerates the melt reactions. The effects of the magnetic field on the above contributions are discussed in detail.  相似文献   

14.
Aluminum (Al) alloy 7075 reinforced with Al2O3 particles was prepared using the stir casting method. The microstructure of the cast composites showed some degree of porosity and sites of Al2O3 particle clustering, especially at high-volume fractions of Al2O3 particles. Different squeeze pressures (25 and 50 MPa) were applied to the cast composite during solidification to reduce porosity and particle clusters. Microstructure examinations of the squeeze cast composites showed remarkable grain refining compared with that of the matrix alloy. As the volume fraction of particles and applied squeeze pressure increased, the hardness linearly increased. This increase was related to the modified structure and the decrease in the porosity. The effect of particle volume fraction and squeeze pressure on the dry-sliding wear of the composites was studied. Experiments were performed at 10, 30, and 50 N with a sliding speed of 1 m/s using a pin-on-ring apparatus. Increasing the particle volume fraction and squeeze pressure improved the wear resistance of the composite compared with that of the monolithic alloy, because the Al2O3 particles acted as load-bearing constituents. Also, these results can be attributed to the fact that the application of squeeze pressure during solidification led to a reduction in the porosity, and an increase in the solidification rate, leading to a finer structure. Moreover, the application of squeeze pressure improved the interface strength between the matrix and Al2O3 particles by elimination of the porosity at the interface, thereby providing better mechanical locking.  相似文献   

15.
The microstructure and mechanical properties of 2024 aluminum alloy composite materials strengthened with Al2O3 Saffil fibers or together with addition of carbon fibers were investigated. The fibers were stabilized in the preform with silica binder strengthened by further heat treatment. The preforms with 80-90% porosity were infiltrated by direct squeeze casting method. The microstructure of the as-cast specimens consisted mainly of α-dendrites with intermetallic compounds precipitated at their boundaries. The homogenization treatment of the composite materials substituted silica binder with a mixture of the Θ phase and silicon precipitates distributed in the remnants of SiO2 amorphous phase. Outside of this area at the binder/matrix interface, fine MgO precipitates were also present. At surface of C fibers, a small amount of fine Al3C4 carbides were formed. During pressure infiltration of preforms containing carbon fibers under oxygen carrying atmosphere, C fibers can burn releasing gasses and causing cracks initiated by thermal stress. The examination of tensile and bending strength showed that reinforcing of aluminum matrix with 10-20% fibers improved investigated properties in the entire temperature range. The largest increase in relation to unreinforced alloy was observed for composite materials examined at the temperature of 300 °C. Substituting Al2O3 Saffil fibers with carbon fibers leads to better wear resistance at dry condition with no relevant effect on strength properties.  相似文献   

16.
Taguchi technique was used to predict the influence of processing parameters on the erosive wear behavior Al7034-T6 composite reinforced with SiC and Al2O3 particles in different mass fractions. These hybrid metal matrix composites (HMMCs) were fabricated by using a simple technique called stir casting technique. Scanning electron microscope (SEM) was used to study the surface morphology of the composite and its evolution according to processing time. The design of experiment (DOE) based on Taguchi's L16 orthogonal array was used to identify various erosion trials. The most influencing parameter affecting the wear rate was identified. The results indicate that erosion wear rate of this hybrid composite is greatly influenced more by filler content and impact velocity respectively compared to other factors. This also shows the significant wear resistance with the increase in the filler contents of SiC and Al2O3 particles, respectively.  相似文献   

17.
A new method was used to fabricate 7075 Al alloy based composites with Al2O3 nanoparticles to improve the distribution of particles. In this study, nano-sized particles were fed into the molten alloy through the flow of argon gas, then the Al2O3/7075 composites were prepared by solid-liquid mixed casting. The results indicated that the composite samples showed fine microstructure and achieved a homogeneous distribution of particles. Also, it was found that relative to the as-cast 7075 alloy, the Al2O3/7075 composites exhibited higher mechanical properties, which is due to the effect of uniform distributed Al2O3 nanoparticles reinforcement.  相似文献   

18.
Metal matrix composites (MMC) were manufactured using hot pressing followed by hot extrusion of aluminum (Al) powder reinforced by alumina (AI2O3) particles. Under tensile as well as compressive loads, a strength improvement of 64 to 100 % compared to the matrix material strength was obtained. The percent elongation to fracture ranged from 20 to 30%, which indicates good ductility as compared to the ductility of MMC manufactured by other techniques. Optical as well as scanning electron microscopy (SEM) examinations were used for characterization of the material microstructure and fracture behavior. Porosity retained in the microstructure was very limited in the case of pure aluminum billets. Microstructural examination revealed uniform distribution of Al2O3 particles in the Al-matrix. Under tensile loads, voids opened by decohesion between the matrix and reinforcement. Such behavior led to a decrease in strength properties of the MMC as a function of reinforcement volume fraction. The fracture surface is dominated by the ductile fracture features, that is, dimples. Voids were found to initiate at retained porosity sites at the AI/AI2O3 interface or in the matrix close to the interface due to stress concentration. The SEM revealed the formation of a complex fine subgrain structure. Such a polygonized structure is a major source of strengthening.  相似文献   

19.
碳酸铝铵与熔融的铝液反应原位生成颗粒增强铝基复合材料,对复合材料的力学性能和摩擦磨损行为进行研究。结果表明:在搅拌的铝熔体中碳酸铝铵发生分解反应生成γ-Al2O3;该原位反应的增强颗粒比直接添加的Al2O3在铝熔体中分布得更均匀;复合材料的密度和硬度随着增强相加入量的增加而提高,而强度则随着增强相加入量的增加而降低;磨损率随着增强相加入量的增加和载荷的增加而提高;原位反应生成的复合材料的力学性能和耐磨性明显优于直接添加Al2O3颗粒形成的复合材料的。  相似文献   

20.
The composite coatings containing HBN were prepared on 2024 aluminum alloy by microarc oxidation in the electrolyte with nano-HBN particles. The microstructure, surface roughness, phase composition, hardness, adhesion strength and wear resistance of composite coatings were analyzed by SEM, EDS, laser confocal microscope, XRD, Vickers hardness tester, scratch test and ball-on-disc abrasive tests. The results revealed that composite coatings were mainly composed of γ-Al2O3, α-Al2O3, mullite and HBN. With increasing the content of HBN particles in the electrolyte, the size and number of the pores on the surface of composite coatings decreased significantly. Compared to the MAO coatings without HBN, the composite coatings exhibited better wear resistance, as demonstrated by the lower friction coefficient and the lower wear rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号