首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mg-Al-Sr-based alloys (AJ alloys) have shown superior creep performance and tensile strength at temperatures as high as 175° with stresses up to 70 MPa. Mg-6Al-2.4Sr (AJ62x) exhibits an optimum combination of creep resistance and excellent castability, while AJ62Lx (strontium <2.1) has better ductility than other AJ formulations. The AJ alloy microstructure is characterized by the Al4Sr-α(Mg) lamellar phase that forms at the interdendritic/grain boundary region of the primary magne sium matrix. Mg-5Al-2Sr (AJ52x) contains a ternary phase that was tentatively named Al3Mg13Sr. When the strontium level is low in AJ62x, the volume fraction of Al4Sr is reduced, the aluminum supersaturation of the magnesium primary phase increases, and Mg17Al12 forms. In this article, a mechanism is proposed whereby the creep resistance decreases with the strontium level but the tensile strength and ductility increase. For more information, contact Eric Baril, Noranda, Noranda Technologies Centre, 240 Hymus Pointe-Claire (Montréal), Québec, H9R 1G5 Canada; (514) 630-9347; fax (514) 630-9379; e-mail eric.baril@ntc.noranda.com.  相似文献   

3.
Al-rich Al–Sr alloys contain dispersed Al4Sr precipitates in the Al-matrix. When melted and emulsified together with a smaller volume of Cd, Cd-rich droplets are formed (being immiscible with the Al-rich liquid). The Al4Sr precipitates prefer the Al/Cd interface, stabilizing the Cd droplets in the Al-matrix. The contact angle of the Cd-rich liquid on Al4Sr intermetallic phase under the Al-rich liquid alloy is about 90°, being ideal for emulsion stabilization. In this way, Al/Cd monotectic alloys can be produced with homogeneously dispersed Cd particles. The key to the success of this process is the in-situ formation of strontium aluminide precipitates stabilizing the Cd droplets in the liquid Al/Cd emulsion.  相似文献   

4.
The influence of strontium (Sr) additions in the form of Mg–Sr master alloys from 0 to 0.6 wt% on the mechanical properties, corrosive nature, and microstructure of Al–9.2Mg–0.7Mn alloys is investigated. The material is studied in a fully annealed (O‐temper) and a sensitizing treatment at 150°C for 7 days. Here we demonstrate that there will be a new phase which might be (Al, Mg)17Sr2 formed in the as‐cast microstructure. When the Sr content is 0.2 wt%, under the premise that the mechanical properties of completely annealed alloy change little (relative to the matrix: the ultimate tensile strength increases by 8 MPa and the elongation only decrease by 1.6%), the intergranular corrosion resistance is significantly improved. The specific performance is that the mass loss from intergranular corrosion decreases by more than 53% from the addition of 0.2 wt% Sr after sensitizing.  相似文献   

5.
Al-Si-Cu (319-type) alloys containing 0.04 and 0.4 wt% Mg were used in this study. The alloys were modified with ~80 ppm strontium and various concentrations of bismuth (50–9000 ppm) and calcium (50–200 ppm) were added. The alloy melts were poured into a preheated graphite mould (600 °C, cooling rate ~0.8 °C/s) that was also used to conduct thermal analysis experiments to monitor the effects of the Bi and Ca additions on the Al-Si eutectic reaction. Microstructures were examined using optical microscopy, image analysis, and electron probe microanalysis (EPMA), coupled with EDX/WDS facilities. The effects of Bi and Ca on the microstructural changes of the modified 319 alloys were studied in terms of: a) the changes in the Al-Si eutectic temperature with trace element additions,

b) the Si particle characterisation (particle length, area, roundness, and density), and

c) the identification of new phases occurring during solidification.

The results showed that the modifying effect of Sr continuously diminished with the addition of Bi up to ~3000 ppm, after which the modifying action of Bi commenced, with a further increase in its concentration. Bismuth was found to precipitate in the form of oxides containing a few ppm of Sr and an appreciable amount of Mg (~5%). It was found that Ca additions of 50 ppm and higher coarsened the Si particles, due to the formation of Al-Si-Ca-Sr compounds, the form (rod or plate) and chemical composition (i.e., Al7(Ca, Sr)Si7 or Al2(Ca, Sr)Si2) of which were strongly related to the Mg concentration in the alloy.  相似文献   

6.

Effects of ageing treatment on the microstructures, mechanical properties and corrosion behavior of the Mg-4.2Zn-1.7RE-0.8Zr-xCa-ySr [x=0, 0.2 (wt.%), y=0, 0.1, 0.2, 0.4 (wt.%)] alloys were investigated. Results showed that Ca or/and Sr additions promoted the precipitation hardening behavior of Mg-4.2Zn-1.7RE-0.8Zr alloy and shortened the time to reaching peak hardness from 13 h to 12 h. The maximum hardness of 77.1±0.6 HV for the peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy was obtained. The microstructures of peak-aged alloys mainly consist of α-Mg phase, Mg51Zn20 phase and ternary T-phase. The Zn-Zr phase is formed within the α-Mg matrix, and the Mg2Ca phase is formed near T-phase due to the enrichment of Ca in front of the solid-liquid interface. Furthermore, fine short rod-shaped β′1 phase is precipitated within the α-Mg matrix in the peak-aged condition. The peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy exhibits optimal mechanical properties with an ultimate tensile strength of 208 MPa, yield strength of 150 MPa and elongation of 3.5%, which is mainly attributed to precipitation strengthening. In addition, corrosion properties of experimental alloys in the 3.5wt.% NaCl solution were studied by the electrochemical tests, weight loss, hydrogen evolution measurement and corrosion morphology observation. The results suggest that peak-aged alloys show reduced corrosion rates compared with the as-cast alloys, and minor additions of Ca and/or Sr improve the corrosion resistance of the Mg-4.2Zn-1.7RE-0.8Zr alloy. The peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy possesses the best corrosion resistance, which is mainly due to the continuous and compact barrier wall constructed by the homogeneous and continuous second phases.

  相似文献   

7.
The corrosion performance of high pressure die-cast Al-6Si-3Ni (SN63) and Al-6Si-3Ni-2Cu (SNC632) alloys in 3.5% (mass fraction) NaCl solution was investigated. X-ray diffraction (XRD) and microstructural studies revealed the presence of single phase Si and binary Al3Ni/Al3Ni2 phases along the grain boundary. Besides, the single Cu phase was also identified at the grain boundaries of the SNC632 alloy. Electrochemical corrosion results revealed that, the SNC632 alloy exhibited nobler shift in corrosion potential (?corr), lower corrosion current density (Jcorr) and higher corrosion resistance compared to the SN63 alloy. Equivalent circuit curve fitting analysis of electrochemical impedance spectroscopy (EIS) results revealed the existence of two interfaces between the electrolyte and substrate. The surface layer and charge transfer resistance (Rct) of the SNC632 alloy was higher than that of the SN63 alloy. Immersion corrosion test results also confirmed the lower corrosion rate of the SNC632 alloy and substantiated the electrochemical corrosion results. Cu addition improved the corrosion resistance, which was mainly attributed to the absence of secondary Cu containing intermetallic phases in the SNC632 alloy and Cu presented as single phase.  相似文献   

8.
利用Cu元素的含量变化研究了Al8Cu4Er相的形成与演变规律及其对Al-Zn-Mg-Er-Sc-Zr合金腐蚀性能的影响。结果表明:随着Cu含量的增加,合金晶粒得到显著细化,但同时固溶态合金不同类型的残余相增多;Al8Cu4Er相与Al-Fe相存在伴生关系,二者通过Cu与Fe交互作用实现相的转化,且可表述为如下关系式:;不同成分合金的晶间腐蚀均表现出与残余相密切相关的点蚀特征,含Cu、Er的Al-Fe相虽然具有更小的腐蚀坑尺寸,但网状分布特征使腐蚀深度有所增加;而具有更好耐蚀性能的Al8Cu4Er则因相的粗化和它与Al-Fe相的伴生关系导致合金耐蚀性能严重下降。  相似文献   

9.
锶加入镁合金中可以提高合金的铸造性能;少量的锶加入到镁合金中,能够细化镁合金的组织,提高镁合金的室温力学性能;锶对不同系列镁合金力学性能的影响不尽相同;锶合金化可以改善镁合金的高温力学性能以及蠕变性能.锶是提高镁合金耐蚀性的有效合金元素,含锶镁合金有望成为新型的轻质耐高温材料.  相似文献   

10.
Mg–2·2Nd–xSr–0·3Zr alloys (wt-%, x?=?0, 0·4, 0·7 and 2·0) were prepared by gravity casting to study the effects of Sr addition on the microstructure and corrosion resistance of Mg–Nd–Zr alloys in simulated body fluid (SBF). Phases were identified by X-ray diffraction, and microstructure was observed with optical microscopy and scanning electron microscopy. Corrosion resistance of the alloys was determined by evaluating mass loss and hydrogen evolution during immersion in SBF. Mg17Sr2 phase was formed, and the grain size decreased with additional Sr addition. For the grain refinement and more continuous second phase, which could improve the corrosion resistance, the alloy with 0·7 wt-%Sr showed the slowest corrosion rate, whereas the alloy with 2·0 wt-% showed the fastest corrosion rate due to the increased volume fraction of Mg17Sr2, which led to severe local microgalvanic corrosion.  相似文献   

11.
研究了Sr对AZ31B镁合金显微组织和腐蚀性能的影响。当AZ31B中加入的Sr含量大于0.3%时,合金组织中β相(Mg_(17)Al_(12))减少,分布更加弥散和均匀,并且在晶界上形成了断续网状分布的Al_4Sr相,合金组织明显细化。当AZ31B中加入的Sr含量达到0.9%时腐蚀速率下降为AZ31B的50%。但Sr含量达到1.2%时,晶界处出现共晶组织呈断续网状分布,合金晶粒再度增大。  相似文献   

12.
Jin  Wei  Song  Yu-lai  Liu  Yao-hui  Zhao  Ping  Misra  R. D. K. 《中国铸造》2019,16(2):88-96
A series of AM60-1Ce-xCa(x=0, 0.5, 1.5, 2.5) magnesium alloys were prepared by gravity casting method and analyzed by means of XRD, DSC and SEM. The effects of Ca on normal temperature mechanical properties and high temperature creep behavior of alloys were characterized by tensile and constant creep test.Microstructure analysis indicated that Ca was preferentially combined with Al in the alloy to form the high melting point Al_2Ca phase at the grain boundary. The addition of Ca can refine the crystal grains and reduces the content of β-Mg_(17)Al_(12) phase. With the increase of Ca content in the alloy, Al_2Ca phases at the grain boundary gradually changed to the network of lamellar structure, and replaced the β-Mg_(17)Al_(12) phase as the main strengthening phase gradually. The creep resistance of the alloy continuously increases because the high-temperature stable phase Al_2Ca firmly nailed at grain boundaries impedes the sliding of grain boundaries. However, when the addition of Ca was more than 1.5%, mechanical properties of the alloy started to decrease, which was probably due to the large amount of irregularly shaped Al_2Ca phases at the grain boundary. Experimental results show that the optimal addition amount of Ca is 1.5 wt.%.  相似文献   

13.
In this study, the effect of silver (0, 0.2, 0.5, and 1 wt.%) on the microstructure and mechanical properties of a magnesium-based alloy (Mg-Al 6 wt.%-Sn 1 wt.%-Mn 0.3 wt.%-Ti 0.3 wt.%) were investigated. The alloys were produced under a controlled atmosphere by a squeeze-casting process. X-ray diffractometry revealed that the main phases are α-Mg, α-Ti, β-Mg17Al12 and Al8Mn5 in the all of alloys. In addition to, Al81Mn19 phase was found with Ag additive. Besides, the amount of β-Mg17Al12 phase was decreased with increasing the amount of Ag. The strength of the base alloy was increased by solid solution mechanism and decreasing the amount of β-Mg17Al12 phase with addition of Ag. Furthermore, existence of Al81Mn19 phase can be acted an important role in the increase on the mechanical properties of the alloys.  相似文献   

14.
Abstract

This study was carried out on 319 alloys containing low and high levels of Mg, in the non-modified and Sr modified conditions (150 ppm Sr addition). Single step, two step and triple step heat treatments were applied to identify the optimum solution heat treatment to minimise incipient melting of the copper phases Al2Cu and Al5Mg8Cu2Si6 in these alloys in relation to the alloy properties. In Mg free alloys, no incipient melting of Al2 Cu was observed even in samples heat treated at 520°C. Addition of Sr leads to modification of Si particles but also to an increase in area per cent porosity and pore length, especially when the solution temperature reaches 520°C. Addition of Mg results in a decrease in the Si particle aspect ratio but an increase in particle size. Magnesium was also found to increase the possibility of incipient melting resulting from the formation of the insoluble Al5Mg8Cu2Si6 phase. To some degree, Sr decreases the effect that Mg has in increasing the area per cent porosity and pore length, while Mg impairs the effects that Sr has on modifying Si particles, even though the lowest Al–Si eutectic temperature is obtained for the 319 alloy containing both Mg and Sr.  相似文献   

15.
Mg–2.2Nd–xSr–0.3Zr alloys (x=0, 0.4 and 0.7, mass fraction, %) were prepared by gravity casting. Solution treatment was conducted on the as-cast alloys to homogenize microstructure, and hot extrusion was subsequently conducted. Microstructure was observed using an optical microscope and a scanning electron microscope. Biocorrosion behaviors of the alloy in simulated body fluid were analyzed by mass loss, hydrogen evolution and Tafel polarization experiments. The results show that the amount of residual eutectic phase of the solution treated alloys increases with increasing Sr addition, and the grains are significantly refined after hot extrusion. The corrosion resistance of the solution treated alloys deteriorates apparently with increasing Sr addition, while the corrosion resistance of the as-extruded alloys is improved with Sr addition. Nevertheless, the biocorrosion behavior of the as-extruded alloys obtained by Tafel polarization shows different trends from those obtained by the other two methods.  相似文献   

16.
Abstract

This study investigates the effects of solution heat treatment on dissolution of the Al2Cu phase in non-modified and 150 ppm Sr modified 319 type alloys. Experimental and industrial 319 alloys containing different Mg levels (0, 0·3 and 0·6 wt-%) were used for this purpose. Electron probe microanalysis (EPMA) in conjunction with energy dispersive X-ray (EDX) analysis was used to monitor the distribution of Cu in the matrix and to measure the undissolved Al2Cu phase. In as cast 319 alloys, copper segregates at the dendrite boundaries. The addition of Mg and Sr may cause this segregation to deteriorate. After heat treatment, the copper begins to distribute more evenly across the dendrite as well as in the matrix. The amount of Cu dissolved in the matrix increases with increasing solution time and temperatures, reaching a maximum for the 490°C/8 h solution heat treatment. The dissolution process of eutectic and block like Al2Cu was also investigated.  相似文献   

17.
The influence of relative humidity (80–90–98% RH) and temperature (25 and 50 °C) on the corrosion behaviour of AZ31, AZ80 and AZ91D magnesium alloys was evaluated using gravimetric measurements. The results were compared with the data obtained for the same alloys immersed in Madrid tap water. The corrosion rates of AZ alloys increased with the RH and temperature and were influenced by the aluminium content and alloy microstructure for RH values above 90%. The initiation of corrosion was localised around the Al–Mn inclusions in the AZ31 alloy and at the centre of the α‐Mg phase in the AZ80 and AZ91D alloys. The β‐Mg17Al12 phase acted as a barrier against corrosion.  相似文献   

18.
Abstract

Coolant corrosion is a major drawback for the use of magnesium alloys in engine and cooling system, but the coolant is not normally intended to prevent corrosion of magnesium alloys. This research assessed the corrosion performance of two magnesium alloys, AZ91D and AM50A, in two newly formulated radiator coolants using immersion test, potentiodynamic polarisation test, and corroded surface analysis. Two coolants were named as Irgacool Plus L and Irgacool Plus S. C7, C8-organic acids and polycarboxylic acid were the main inhibitor species in Irgacool Plus L while Irgacool Plus S was formulated with C7, C8-organic acids and sebacic acid inhibitors. Corrosion rates of magnesium alloys decreased twice in Irgacool Plus L compared with Irgacool Plus S. AZ91D alloy had better corrosion resistance than AM50A alloy in both radiator coolants. Both alloys suffered corrosion due to microgalvanic coupling between cathodic β-Mg17Al12 intermetallic and anodic α-Mg matrix, and the presence of Al8Mn5 and Al11Mn4 intermetallics in AM50A led to further microgalvanic corrosion. A continuous network of β-Mg17Al12 phase and higher Al content α-Mg matrix accounted for better corrosion resistance of AZ91D alloy.  相似文献   

19.
To clarify the correlation of nanoscale heterogeneity with corrosion in Al-based metallic glasses, three model alloys with a single nanoscale α-Al, Al3Ni or Al11Ce3 phase embedded in amorphous Al-Ni-Ce alloy matrix were obtained directly by melt quenching. The results indicated that the high pitting corrosion resistance of AM alloys was not deteriorated by nanocrystalline α-Al precipitation; whereas the pitting potential was slightly decreased and considerably reduced relative to their amorphous state due to the precipitation of nanocrystalline Al3Ni or Al11Ce3 respectively. Such a pitting sensitivity of different types of heterogeneities attributes to the nano-scale pit initiation events.  相似文献   

20.
Present article is focused on the microstructural features of Al–Ti–C–Sr master alloy, an inoculant for simultaneous grain refinement and modification of hypoeutectic Al–Si alloys. This master alloy is basically a metal matrix composite consisting of TiC and Al4Sr phases formed in situ in the Al-matrix. TiC particles initiate the refinement of primary α-Al through heterogeneous nucleation in molten hypoeutectic Al–Si alloy, while Al4Sr phase dissolves in molten Al–7Si alloy enriching the melt with Sr, which eventually leads to modification of eutectic silicon during solidification of the Al–7Si alloy casting. Thus present master alloy serves in both ways, as a grain refiner and a modifier for hypoeutectic Al–Si alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号