首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The hydrolysis of tallow, coconut oil and olive oil, by lipase fromCandida rugosa, was studied. The reaction approximates a firstorder kinetics model. Its rate is unaffected by temperature in the range of 26–46 C. Olive oil is more rapidly hydrolyzed compared to tallow and coconut oil. Hydrolysis is adversely affected by hydrocarbon solvents and a nonionic surfactant. Since amounts of fatty acids produced are almost directly proportional to the logarithms of reaction time and enzyme concentration, this relationship provides a simple means of determining these parameters for a desired extent of hydrolysis. All three substrates can be hydrolyzed, almost quantitatively, within 72 hr. Lipase fromAspergillus niger performs similarly. The lipase fromRhizopus arrhizus gives a slow hydrolysis rate because of its specificity for the acyl groups attached to the α-hydroxyl groups of glycerol. Esterification of glycerol with fatty acid was studied with the lipase fromC. rugosa andA. niger. All expected five glycerides are formed at an early stage of the reaction. Removal of water and use of excess fatty acid reverse the reaction towards esterification. However, esterification beyond a 70% triglyceride content is slow.  相似文献   

2.
Catalytic conversion (hydrolysis) of carbohydrate polymers present in the lignocellulosic biomass into fermentable sugars is a key step in the production of bioethanol. Although, acid and enzymatic catalysts are conventionally used for the catalysis of various lignocellulosic biomass, recently application of immobilized enzymes (biocatalysts) have been considered as the most promising approach. Immobilization of different biocatalysts such as cellulase, β-glucosidase, cellobiose, xylanase, laccase, etc. on support materials including nanomaterials to form nanobiocatalyst increases catalytic efficacy and stability of enzymes. Moreover, immobilization of biocatalysts on magnetic nanoparticles (magnetic nanobiocatalysts) facilitates easy recovery and reuse of biocatalysts. Therefore, utilization of nanobiocatalysts for catalysis of lignocellulosic biomass is helpful for the development of cost-effective and ecofriendly approach. In this review, we have discussed various conventional methods of hydrolysis and their limitations. Special emphasis has been made on nanobiocatalysts used for hydrolysis of lignocellulosic biomass. Moreover, the other most important aspects, like nanofiltration of biomass, conversion of lignocellulose to nanocellulose, and toxicological issues associated with application of nanomaterials are also discussed.  相似文献   

3.
Lignocellulosic materials, such as agricultural residues, are abundant renewable resources for bioconversion to sugars. The sugar cane bagasse was studied here to obtain simple sugars for the production of alcohols and other chemicals. The crystalline structure of cellulose and the lignin that physically seals the surrounding cellulose fibers makes enzymatic hydrolysis difficult by preventing the contact between the cellulose and the enzyme. Two different samples of sugar cane (bagasse pulp and skin) were used and compared with microcrystalline cellulose (Avicel). The investigated samples were pretreated with SC-CO2 explosion before hydrolysis. The experiments were conducted at 12, 14 and 16 MPa at a temperature of 60 °C. In this process, particles of celluloses within the size range from 0.25 to 0.42 mm were placed in defined amounts inside the experimental vessel, CO2 was injected and let stand for 5 and 60 min. The explosion pretreatment of cellulosic materials by SC-CO2 was performed in an apparatus of a static type with 300 ml of volume. The hydrolysis reaction using cellulose enzyme was carried at 55 °C for 8 h. After the pretreatment, the glucose yield increased in 72% to the bagasse sample. The SC-CO2 pretreatment together with alkali increased the glucose yield in 20% as compared with alkali only. X-ray, microscopy and thermal analysis were used to investigate the effect of the pretreatment.  相似文献   

4.
The kinetics of the enzymatic hydrolysis of two substrates—lignocellulosic materials from Miscanthus and oat hulls—in an acetate buffer is studied at different concentrations of the substrates. The substrates are obtained via single-step treatment with a dilute solution of nitric acid. The content of a nonhydrolyzable component—acid-insoluble lignin—for Miscanthus and oat hulls was 11 and 14%, respectively. A multi-enzyme composition of commercially available enzyme preparations CelloLux-A and BrewZyme BGX was used as a catalyst. It is shown that treatment with the nitric acid solution produces reactive substrates for the enzymatic hydrolysis. The innovative science of the results is confirmed by Russian patent 2533921. Kinetics of the enzymatic hydrolysis of these substrates in an acetate buffer can be described by a mathematical model based on a modified Michaelis–Menten equation. The main kinetic constants for both substrates are determined from the experimental data. The equilibrium concentrations of reducing substances (RSes) for the substrates are calculated from the initial substrate concentrations. It is found that within the studied range of substrate concentrations (33.3–120.0 g/L), the initial rate of enzymatic hydrolysis for the lignocellulosic material from oat hulls is higher than that for the lignocellulosic material from Miscanthus by 1 g/(L h). It is shown that the yield of RS depends of the initial concentration of the substrates: as the concentration rises from 33.3 to 120 g/L, the yield of RS falls 1.5–2.0 times, due to substrate inhibition. At low initial concentrations, the yields of RS are similar for the substrates from Miscanthus and oat hulls. When the initial concentration of the substrate reaches 120 g/L, the yield of reducing substances for the lignocellulosic material from Miscanthus is approximately 20% higher than that for the lignocellulosic material from oat hulls. The established dependences and the proposed mathematical model allow us to optimize the initial concentration of the substrate for efficient enzymatic hydrolysis.  相似文献   

5.
BACKGROUND: The efficient production of a fermentable hydrolyzate is an immensely important requirement in the utilization of lignocellulosic biomass as a feedstock in bioethanol production processes. The identification of the optimal enzyme loading is of particular importance to maximize the amount of glucose produced from lignocellulosic materials while maintaining low costs. This requirement can only be achieved by incorporating reliable methodologies to properly address the optimization problem. RESULTS: In this work, a data‐driven technique based on artificial neural networks and design of experiments have been integrated in order to identify the optimal enzyme combination. The enzymatic hydrolysis of sugarcane bagasse was used as a case study. This technique was used to build up a model of the combined effects of cellulase (FPU/L) and β‐glucosidase (CBU/L) loads on glucose yield (%) after enzymatic hydrolysis. The optimal glucose yield, above 99%, was achieved with cellulase and β‐glucosidase concentrations in the ranges of 460.0 to 580.0 FPU L?1 (15.3–19.3 FPU g?1 bagasse) and 750.0 to 1140.0 CBU L?1 (2–38 CBU g?1 bagasse), respectively. CONCLUSIONS: The dynamic model developed can be used not only to the prediction of glucose concentration profiles for different enzymatic loadings, but also to obtain the optimum enzymes loading that leads to high glucose yield. It can promote both a successful hydrolysis process control and a more effective employment of enzymes. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
以木质纤维素生产燃料乙醇具有原料可再生性和环境友好的优点而备受重视。本文介绍了国内外木质纤维素制取燃料乙醇中的水解工艺过程,包括浓酸水解、稀酸水解和酶水解工艺,分析了各工艺的技术特点,同时指出稀酸预处理-酶水解工艺将成为近几年国内外研究和开发的重点。  相似文献   

7.
《化工进展》2009,28(11)
以木质纤维素生产燃料乙醇具有原料可再生性和环境友好的优点而备受重视.本文介绍了国内外木质纤维素制取燃料乙醇中的水解工艺过程,包括浓酸水解、稀酸水解和酶水解工艺,分析了各工艺的技术特点,同时指出稀酸预处理-酶水解工艺将成为近几年国内外研究和开发的重点.  相似文献   

8.
在十二烷基苯磺酸钠(SDBS)的水相胶束体系中,利用漆酶催化聚合邻苯二酚。探讨了反应体系的温度、pH、底物摩尔比以及邻苯二酚浓度对聚合反应的影响。通过FTIR、GPC、DSC和TGA对产物进行表征。结果表明:漆酶催化邻苯二酚聚合的最适条件为温度40℃,pH=5.5、邻苯二酚浓度为5 mmol/L、SDBS与邻苯二酚摩尔比为2∶1。聚合产物相对分子质量(简称分子量,下同)约为810,热分析表明,聚合物玻璃化转变温度为95℃。  相似文献   

9.
10.
以1-丁基-3-甲基咪唑四氟硼酸盐作为催化剂,以芳香胺和2-氨基苯甲醛为原料,在水介质中通过环化缩合反应,合成了一系列四氢喹唑啉类衍生物。通过对模板反应条件的探究,确定了最优条件为:0.2 mmol 2-(1-吡咯烷基)苯甲醛(Ⅰa),0.4 mmol芳香胺(Ⅱa),30%(以Ⅰa物质的量为基准)的催化剂,1 mL H2O,90 ℃下反应6 h,可得到产率为81%的产物。同时探索了的反应底物普适性,以较好的底物范围合成了19种四氢喹唑啉类衍生物。  相似文献   

11.
This review discussed the last 10 years progress in the use of lignocellulosic materials chemically modified as low‐cost biosorbents. Thus, the chemical modifications, such as chemical pretreatment, oxidation, as well as the grafting of carboxyl groups, amines, amides, etc., on lignocellulosic fibers, that aim to increase the number of adsorption sites and maximize toxic metal ion adsorption capacity have been addressed. The literature presents results that indicated performances of biosorbents equal to or even higher than conventional methods and adsorbents. Many efforts have been concentrated on the improvements of these biosorbents through chemical modifications. However, some difficulties still exist, including the discharge of colored organic compounds resulting from the pretreatments and the development of fast, clean, and low‐cost synthesis of selective and multifunctional adsorbents. Thus, the challenge for future research is to find solutions to these difficulties in order to finally make lignocellulosics biosorbents that can replace conventional adsorbent materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43286.  相似文献   

12.
《Catalysis communications》2007,8(8):1214-1218
A green route for the synthesis of multi-substituted quinolines using catalytic amounts of Lewis acids via Friedlander annulation is described. Zr(NO3)4 and Zr(HSO4)4 were found to be more efficient than other investigated Lewis acids in the catalyzed condensation of o-aminoaryl ketones or o-amino benzonitrile with ketones or β-diketones in water under reflux conditions.  相似文献   

13.
A simple, efficient and environmentally benign protocol for the synthesis of methylenebisamides and carbinolamides in high yields from aromatic amides and formaldehyde in the presence of heterogeneous catalysts (Hβ and NaY zeolites) using water as a solvent is demonstrated. Moreover, the catalyst is recyclable and can be reused without significant loss in its catalytic activity.  相似文献   

14.
D.M. Mackay  P.V. Roberts 《Carbon》1982,20(2):105-111
Prune pit chars prepared by pyrolysis at heating rates of 1 and 15°C/min to 500, 700 and 900°C were subsequently gasified by exposure to CO2 at 900°C for various lengths of time. Gasification rate was found to be dependent on the conditions during pyrolysis: slow heating below 500°C and prolonged exposure to high temperatures (~900°C) during pyrolysis in an inert atmosphere lead to lower rate gasification. Despite differences in gasification rate, the pore structure developed for a given mass loss due to the gasification reactions was apparently independent of the char preparation conditions. Pore volume in the gasified char (expressed on an absolute basis) passed through a maximum at 40–50% burnoff, apparently due to mass loss from the exterior of the particles.  相似文献   

15.
Polypyrrole films doped with p-toluenesulfonate and poly(4-styrenesulfonate) anions were synthesized electrochemically. These films were treated with water and dilute NaOH solution for varying periods of time. The films do not lose the anions readily when treated with water. In NaOH, dedoping occurs rapidly, either via migration of the toluenesulfonate anions out of the film or the neutralization of the poly(4-styrenesulfonate) anions. The undoped polypyrrole is very susceptible to ring oxidation resulting in C(SINGLE BOND)O and C(DOUBLE BOND)O groups. Severe deterioration of the mechanical properties of the film also results upon prolonged exposure to NaOH. The effects of heat on the polypyrrole doping level, structure, and mechanical properties were investigated. The results from redoping experiments suggest that unless the dedoping process by NaOH is carried out rapidly, the redoped films will have significantly lower doping levels and conductivities than the pristine films © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 519–526, 1997  相似文献   

16.
A two-stage biomass pretreatment process-a combination of autohydrolysis and aqueous ammonia percolation-was experimentally studied as a method to remove and recover hemicellulose from lignocellulosic biomass. Hemicellulose was completely separated from the biomass after 1 hr of autohydrolysis at 200‡C. As reaction temperature and/or time of autohydrolysis was increased in the range of 170-200‡C and 1–2.5 hr, respectively, the amount of hemicellulose solubilization was increased ; however, more sugars were decomposed. Most of the extracted hemicellulose was recovered as xylose oligomer. Hemicellulose was found to inhibit the enzymatic hydrolysis of cellulose. When the biomass was consecutively pretreated with pure water at 180‡C for 30 min and with 10 wt% ammonia solution at 180‡C for 30 min, about 62% of the hemicellulose was extracted. The enzymatic digestibility of the pretreated biomass was as high as 95 %.  相似文献   

17.
A new polymeric adsorbent bearing both hydrophilic groups providing swelling in water and amidoxime groups for chelating with uranyl ions (UO22+), has been developed and its adsorptive ability for recovering uranium from aqueous media has been investigated. The polymers obtained by irradiating the solution of polyethylene glycol (PEG) in acrylonitrile (AN) are defined as interpenetrating polymer networks (IPNs) and the adsorbent has been obtained by applying the amidoximation reaction to the IPNs with a conversion ratio of ∼ 60%. Kinetics of the conversion reaction of the cyano (CN) group to the amidoxime (HONCNH2) group has been studied by reacting with hydroxylamine (NH2OH) solution at a molar ratio of NH2OH/CN = 1.25 in aqueous media at three different temperatures, 30, 40, and 50°C, for 3–4 days. The degree of amidoximation ratio was determined by UO22+ ion adsorption and FTIR spectrometry and the UO22+ ion adsorption values were found by both UV and gamma spectrometry and also by gravimetry. It was found that the polymeric adsorbent has a very high adsorption ability for uranium and quite a good stability in aqueous media. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2475–2480, 1997  相似文献   

18.
Highly monodisperse polystyrene nanoparticles with mean diameters of less than 100 nm are synthesized via aqueous emulsion polymerization using an amphoteric initiator (VA-057) in the presence of sub-millimolar concentrations of anionic surfactant. Since the net charge on the initiator is almost zero at neutral pH, the resultant latex particle size is mainly determined by surfactant adsorption. Polymerizations were performed in the presence of a range of anionic surfactants with differing critical micelle concentrations (CMC) by varying the concentrations of surfactant, initiator and monomer, and also the ionic strength. Sodium dodecyl benzene sulfonate (SDBS), sodium hexadecyl sulfate (SHS), and sodium octadecyl sulfate (SOS) have relatively low CMCs and so enable formation of highly monodisperse nanoparticles at relatively low (sub-millimolar) surfactant concentrations, CS (i.e. below the CMC in each case). Empirically, it was found that the particle number, Np, and coefficient of variation of the particle size, CV, were strongly dependent on the CS/CMC ratio: Np increased almost in proportion with the square of this ratio, while the CV exhibited a minimum at approximately CS/CMC = 0.20. Higher ionic strength reduced the particle size, which is consistent with the above relationship because the addition of salt lowers the CMCs of ionic surfactants. Polymer latex particles produced using such formulations form highly regular, close-packed colloidal arrays.  相似文献   

19.
This paper reports the results of experimentation carried out to compare the ability of mineral acids (HCl and H2SO4) and cellulase enzyme (from Trichoderma reesei QM 9414) in the saccharification of corn-cob, groundnut shell, sugarcane bagasse and wheat straw. With the exception of corn-cobs, acids proved to be better saccharifying agents than the cellulase complex, but the former gave a poor substrate for alcoholic fermentation since the saccharified mashes contained large amounts of pentoses which are not metabolized by most strains of yeast. In addition, both acids and enzymes have been found to be substrate specific. Maximal saccharification of groundnut shell, sugarcane bagasse and wheat straw were obtained with sulphuric acid at 15.0, 5.0 and 5.0% (v/v) under 15, 15 and 15 psi pressure for 15, 30 and 30 min, respectively; whereas hydrochloric acid at 7.5% (v/v) with. autoclaving for 30 min at 10 psi resulted in maximum saccharification of corn-cob. However, the order of susceptibility of substrates to enzymatic attack was corn-cob > wheat straw > sugarcane bagasse > groundnut shell. Increase in enzyme concentration (1–4 IU ml?1) and treatment duration (12–72 h) improved saccharification, but increases in substrate concentration (>5.0%, w/v) had an inhibitory effect on the hydrolytic ability of the cellulase enzyme complex. Of the various substrate-acid ratios tested, a ratio of 1:8 was found to be optimal for the eflcient hydrolysis of the substrates under study.  相似文献   

20.
Enzymatic hydrolysis of rawhide using papain and neutrase   总被引:1,自引:0,他引:1  
Rawhide split was hydrolysed separately by two proteolytic enzymes, papain and neutrase. The effects of enzymatic conditions of the hydrolysis reaction were investigated. During the first 10 min of the enzymatic hydrolysis, the yield of the hydrolysed protein increased sharply, then it slowly increased or became essentially constant due to the limited availability of the substrate. The optimum hydrolysis conditions of papain and neutrase for highest protein yield are at 70 °C, pH 6–7 and 40–50 °C, pH 6–7, respectively. The product from papain hydrolysis is a gelatin with low gel strength and viscosity, while that from neutrase hydrolysis is collagen hydrolysate with viscosity as low as water. This is considered to indicate that longer fragments of protein are obtained from papain hydrolysis than that from neutrase implying different mechanisms of papain and neutrase hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号