首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
郑东 《现代仪器》2005,11(2):41-42,40
本文介绍LEOSUPRA系列热场发射扫描电子显微镜的性能及特点 ,主要包括肖特基场发射电子源、电子光学系统以及检测器等。  相似文献   

2.
A magnetic-field-superimposed field emission gun with low aberrations and equipped with a zirconiated tungsten emitter has been developed for applications where very stable high probe currents are required. It has been tested on a conventional electron microscope at 10 kV and on an electron beam testing system at 1 kV. Probe current i = 250 nA in a probe size d = 0.4 μm is obtained at 10 kV; at 1 kV the resolution is 0.1 μm with i = 5 nA, and 0.4 μm with i = 30 nA. For these probe currents, the spatial broadening effect due to electron–electron interactions in the beam is the preponderant factor limiting the probe size.  相似文献   

3.
Aligned TiO2 nanotubes were synthesized by simple anodization of the Ti foil surface. The as-anodized product is further characterized by SEM, XRD, and PL. The tube inner diameter is found to be ≈60-80 nm with the average wall thickness ≈30 nm and areal density ≈15×106/ cm2. FE studies of the aligned TiO2 nanotubes are carried out at base pressure of ≈1×10−8 mbar. The turn-on field observed for an emission current density of ≈10 μA/cm2 is found to be ≈1.7 V/μm and current density of ≈44 μA/cm2 is obtained at an applied field of ≈2.3 V/μm. Photo-enhanced FE study is carried out by shining visible and UV light on the cathode. The aligned TiO2 nanotubes show sensitivity to both the light sources. The FE current shows fast switching response to the visible light. The increment in the preset current upon UV illumination can be attributed to the band edge excitation of the electrons. The free excitons associated with band gap of the TiO2 nanotubes array may be responsible for the visible light sensitivity. TiO2 nanotubes are also grown on the Ti wire and exhibit similar photo-enhanced behavior. The FE and photo-enhanced FE properties demonstrate the applicability of the aligned TiO2 nanotubes in the FE based micro/nanoelectronic devices.  相似文献   

4.
场发射俄歇电子能谱显微分析   总被引:1,自引:1,他引:1  
场发射俄歇电子能谱的显微分析是一项新的分析技术,可对微尺度样品进行点、线、面的元素组分及元素化学态分析。本文简要介绍这项新技术的功能原理和在微电子器件检测等方面的具体应用。  相似文献   

5.
Detonation carbon materials (DCM) composed of non-equilibrium nano-structures show the low-threshold field emission (LTFE). These materials have forward-looking application especially due to high reproducibility of the LTFE-phenomenon on a surface of emitter, where the emitting centers are homogeneously distributed. In this paper we link the effect of LTFE to the nature of the corresponding wave functions based on the experiment results obtained for DCM by the field effect on electrolytes. As we had shown before DCM had been described by an ultra-relativistic dispersion function with extremely small effective mass of electrons and the size-quantization effect had been observed in DCM at even room temperature.Our results based on emission and electrolyte technics of the field-effect measurements in DCM along with modern observations of the field emission in strong electric fields allowed to propose a new resonance transmission model for LTFE-phenomenon, which is alternative to most widely discussed models based on the field-enhancing factors or barrier-lowering mechanisms.  相似文献   

6.
Zhang Y  Du JL  Xu JH  Deng SZ  Xu NS  Chen J 《Ultramicroscopy》2011,111(6):426-430
Carbon nanotube (CNT) has excellent field emission characteristics and could play as a good cold cathode in the application of vacuum electronic devices. However, the practical application faces a big obstacle regarding current fluctuation and deterioration of the CNT cathode. In this research, the formation of amorphous carbon (ac) layer between the CNT film and the substrate, and the effect of the existence of this layer on field emission stability of the CNT film are studied. The formation of the ac layer could be controlled by adjustment of growth temperature and hydrocarbon flow rate. The field emission character and current stability of the CNT film without ac layer are better than those of the CNT film with ac layer. The results attribute to the ac layer a thermal disequilibrium state under high current level. Moreover, adhesion capacity of the CNT film without ac layer is also better than that with the ac layer. It is concluded that the ac layer between the CNT film and substrate is a key factor in the stability of field emission characteristics and should be eliminated before applications.  相似文献   

7.
The application of a field emission gun in an X-ray projection microscope is described. In the microscope, a tungsten cathode activated by zirconium and oxygen in combination with the magnetic one-lens imaging system was used. In order to obtain a sufficiently small-sized X-ray source, a Cu-Be-Al sandwich target was applied.  相似文献   

8.
Field Emission devices (FE) have been proposed as efficient electron sources for several applications such as electron microscopy and vacuum sensors. Evidently, characterization methods applied during development phase of FE devices are crucial to evaluate aspects related with their working stability, homogeneity, and efficiency. However, the traditional methods provide only overall information about such characteristics, which difficult to improve the performance of these devices and their integration with electronics. To overcome this problem, this work presents an alternative system to characterize FE devices through electron emission imaging in real-time. The proposed system acquires I-V features of FE devices, while a video camera captures the emission image from a phosphor screen. Virtual instrumentation based on LabVIEW manages the whole system including measurement instruments, image capture, and data processing. As a result, histograms, 3D maps, and other FE analyses provide information about emitting characteristics of selected regions of interest. The main contribution of this work is to offer an important tool for the analyses of electron emission, by the association of captured images with the localized emission current. The extracted information from our system can efficiently support the characterization and the development of FE devices.  相似文献   

9.
The term “etching,” in electron microscopy, refers to the removal of specimen surface layers and includes chemical, electrolytic, and ion-beam methods. The ion-beam etching process is used to remove layers of a target material by bombarding it with ionized gas molecules. Recently, the method has been applied to the field of biological specimens; however, the practical procedures for such organic materials have not been developed. In the present study, we used an apparatus in which a beam of argon ions is collimated and focused by electrostatic lenses onto an appropriate target. We demonstrated the optimum conditions to observe biological specimens that were treated with osmium tetroxide and tannic acid. The specimens were examined uncoated at low accelerating voltage using a field emission scanning electron microscope. According to our experiments, when a biological specimen was observed under high-resolution conditions at over 50,000x magnification, the optimum condition of ion-beam etching consisted of an accelerating voltage of E = 1 keV and an ion-beam dose of It = 360 ~ 400 μA. min, depending on parts of the specimens. In order to decrease overetching, we had to choose factors such as E = 1 ~ 2 keV and It = 500 μA. min.  相似文献   

10.
We have developed a fully digital field emission scanning electron microscope (FE-SEM) with multifunctions to compensate the charging up of nonconducting surfaces. High-voltage observation, minimum electron dose, variable scanning speed, averaging, integration, tuning of surface potential, and cyclotron movements of secondary electrons have been achieved. This FE-SEM was successfully applied to observe resist, diatomaceous earth, aluminum oxide, and zeolite surfaces. The accelerating voltage is changeable in a range from 0.5 to 30 kV, and the probe current on the sample can be varied from 2×10-9 to l×10-13A to supply optimum electron dose. By using a snorkel- type, strongly excited objective lens (OL) immersing the samples in the magnetic field, the secondary electrons are extracted from the sample. For guiding electrons into the built-in lens-type secondary electron detector (SED), newly developed accelerating and retarding electrodes are installed in the OL to tune the surface potential. Furthermore, this FE-SEM can select 10 scan speeds, and the averaging and integration of secondary electron image signals are possible under every selected scan speed.  相似文献   

11.
Solutions of Schrödinger’s equation have been obtained for electron emission from a small area in a system of planar electrodes. In a uniform field, wave components with non-zero transverse phase constant see a greater height and width of the potential barrier than the normal component does, the extra energy being that corresponding to the transverse momentum. Also the total intensity shows a Gaussian decrease as beam radius increases, even for a point source. The characteristic Gaussian radius increases as the square root of the distance from the starting plane. In contrast, flow from a point source into a region of uniform potential does not show these effects, but spreads much more broadly.  相似文献   

12.
We have measured field-emission resonances (FER) to much higher quantum states than previously observed enabling fine structure in the resonance amplitudes to be investigated. We show that this electron wave interference effect carries additional information in the resonance amplitudes and energies and is sensitive to lateral tip position in a scanning tunnelling microscope experiment. We propose a new method of data analysis that can distinguish between some of the possible origins of the fine structure.  相似文献   

13.
Simultaneous spectral unmixing of excitation and emission spectra (ExEm unmixing) has inherent ability resolving spectral crosstalks, two key issues of quantitative fluorescence resonance energy transfer (FRET) measurement, of both the excitation and emission spectra between donor and acceptor without additional corrections. We here set up a filter‐based multichannel wide‐field microscope for ExEm unmixing‐based FRET imaging (mExEm‐spFRET) containing a constant system correction factor (fsc) for a stable system. We performed m‐ExEm‐spFRET with four‐ and two‐wavelength excitation respectively on our system to quantitatively image single living cells expressing FRET tandem constructs, and obtained accurate FRET efficiency (E) and concentration ratio of acceptor to donor (RC). We also performed m‐ExEm‐spFRET imaging for single living cells coexpressing CFP‐Bax and YFP‐Bax, and found that the E values were about 0 for control cells and about 28% for staurosporin‐treated cells when RC were larger than 1, indicating that staurosporin induced significant oligomerisation.  相似文献   

14.
论述了科学计算可视化的概念,介绍了科学计算可视化的分类与方法。并利用VisualC 开发平台,对平面磨削力和磨削温度场模型进行了科学计算,用OpenGL工具建立了工件的三维实体模型,并在工件实体上用不同的颜色表示不同温升值,从而实现了磨削温度场的可视化过程。同时,系统可以给出磨削温度场中各点的温升值,以及表面温度场曲线和深度方向的温度曲线。  相似文献   

15.
基于双U形激励的交流电磁场检测缺陷可视化技术   总被引:2,自引:0,他引:2  
为了满足交流电磁场检测(ACFM)技术缺陷可视化的需要,引入一种双U形正交激励阵列,在工件表面感应出旋转电磁场,有效地避免了缺陷方向对检测的影响,为缺陷可视化提供充足的信号数据;在此基础上,提出缺陷截面形状轮廓和表面形状轮廓的可视化方法,有限元仿真分析结果显示该方法对缺陷形状的反演平均相对误差不超过10%;利用实验室建立的ACFM正交U形激励阵列试验系统对该可视化方法进行了验证试验,结果表明该方法简便可行,缺陷形状反演精度高,能够有效地实现ACFM的缺陷可视化检测。  相似文献   

16.
Lapping is a precision manufacturing process. However, the material removal rate and surface roughness show significant variation between trials for repeated experiments and, thus, the repeatability of the results depends on the machine operator’s skill. Acoustic emission (AE) seems to be capable of monitoring the process. Therefore, an understanding of AE generation during lapping is important to predict the performance of the grains and hence the lapping results. Based on a theoretical analysis and experimental results collected during flat lapping, the AE signal was investigated for the situation when slurry is supplied without replenishment. The experiments were carried out with a wireless rotating AE sensor mounted in the middle of the lapping plate. Three parameters related to the AE curve are proposed to monitor the process. The influence of process parameters (lapping pressure, velocity, average grain size, concentration of grains in lapping compound and the number of conditioning rings) on the characteristics of the AE curve was investigated.  相似文献   

17.
Zinc oxide (ZnO) nanostructures were produced using a novel pulsed laser ablation apparatus comprising in-situ analysis of the plume by reflection time-of-flight mass spectrometry. Various morphologies of nano and microstructures were obtained for laser wavelengths of 1064 and 355 nm, and oxygen ambient pressures of 10−6 and 10−2 mbar, respectively. None of the produced structures exhibited a particular type of self-organisation whereas all of them showed low aspect ratios and good field emission properties. Optimum values of 5.2 V μm−1 and 2060 were obtained for the turn-on field and Fowler–Nordheim enhancement factor, respectively, for deposited nano-tipped microstructures presenting a high coverage of the substrate. The experimental data showed that for a given laser wavelength, higher field enhancement factors were obtained for the samples grown at the lower pressure of 10−6 mbar. In these conditions, the deposited materials showed distinct nanostructuring and comparison with existing data showed the corresponding ablation plumes to contain (ZnO)n clusters, up to n=13. This work also shows that the electronic properties of the nanostructured ZnO produced in our conditions, as determined by the oxygen concentration during deposition, have an influence on the field emission properties in addition to the nanostructure morphology.  相似文献   

18.
One major concern since the development of the field ion microscope is the mechanical strength of the specimens. The macroscopic shape of the imaging tip greatly influences field-induced stresses and there is merit in further study of this phenomenon from a classical perspective. Understanding the geometrical, as opposed to localized electronic, factors that affect the stress might improve the quality and success rate of atom probe experiments. This study uses macroscopic electrostatic principles and finite element modelling to investigate field-induced stresses in relation to the shape of the tip. Three two-dimensional idealized models are considered, namely hyperbolic, parabolic and sphere-on-orthogonal-cone; the shapes of which are compared to experimental tips prepared by electro-polishing. Three dimensional morphologies of both a nano-porous and single-crystal aluminium tip are measured using electron tomography to quantitatively test the assumption of cylindrical symmetry for electro-polished tips. The porous tip was prepared and studied to demonstrate a fragile specimen for which such finite element studies could determine potential mechanical failure, prior to any exhaustive atom probe investigation.  相似文献   

19.
Nanocrystalline zinc oxide (ZnO) films were synthesized using cathodic reduction of Zn foil in aqueous electrolyte of different molar concentrations containing ZnCl2 and H2O2, followed by annealing at 400 °C in air. An X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used for characterization. The XRD patterns exhibited a set of well-defined diffraction peaks corresponding to the wurtzite phase of ZnO. SEM and TEM images clearly revealed the formation of randomly oriented ZnO nanowires having lengths of several microns and diameters less than 100 nm. From the field emission studies, the threshold field values, required to draw emission current density of ∼1 μA/cm2 were found to be 1.44, 1.36 and 1.5 V/μm for nanowires synthesized using 0.002, 0.004 and 0.016 M electrolyte concentrations, respectively. All Folwer–Nordheim (F–N) plots showed non-linear behavior indicating semiconducting nature of the emitters. The ZnO nanowires exhibited good emission current stability at the pre-set value of ∼10 μA over a duration of 6 h. The simplicity of the synthesis route coupled with the promising emission properties made the electrochemically synthesized ZnO nanowires a suitable candidate for high-current density applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号