首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of the cloned P2X receptor subunits, six are expressed in sensory neurons, suggesting that the native channels may be heteromultimers with diverse composition. It has been proposed that P2X2 and P2X3 form heteromultimers in sensory neurons. We further tested this hypothesis by examining the relationship of P2X2 and P2X3 immunocytochemically. In rat dorsal root and nodose ganglia, P2X2- and P2X3-immunoreactivity (-ir) were highly colocalized, although single-labeled cells were also present. In dorsal root ganglia (DRG), in some cases P2X2-ir appeared to be present in satellite cells. In dorsal horn of spinal cord, at low magnification the laminar localization of P2X2- and P2X3-ir overlapped, but at high magnification colocalization was rarely observed. In contrast, in the solitary tract and its nucleus (NTS), colocalization of P2X2- and P2X3-ir was seen at low and high magnification. These results suggest that the relationship of P2X2- and P2X3-ir is different in nodose and dorsal root ganglia and might reflect differences in the targeting of P2X receptors in different sensory neurons. In monkey, P2X2-ir was observed in DRG neurons and satellite cells and in dorsal horn of spinal cord. P2X3-ir was also seen in DRG neurons. However, the presence of P2X2-ir in NTS as well as the presence of P2X3-ir in spinal cord and NTS could not be established definitively. These results suggest species differences, although a more extensive study of primate sensory systems is necessary.  相似文献   

2.
The P2X3 receptor subunit, a member of the P2X family of ATP-gated ion channels, is almost exclusively localized in sensory neurons. In the present study, we sought to gain insight into the role of P2X3 and P2X3-containing neurons in sensory transmission, using immunohistochemical approaches. In rat dorsal root ganglia (DRG), P2X3-immunoreactivity (-ir) was observed in small- and medium-sized neurons. Approximately 40% of DRG neuronal profiles in normal rats contained P2X3-ir. In rats that had received neonatal capsaicin treatment, the number of P2X3-positive neurons was decreased by approximately 70%. Analysis of the colocalization of P2X3-ir with cytochemical markers of DRG neurons indicated that approximately 94% of the P2X3-positive neuronal profiles were labelled by isolectin B4 from Bandeiraea simplicifolia, while only 3% contained substance P-ir, and 7% contained somatostatin-ir. In dorsal horn of rat spinal cord, P2X3-ir was observed in the inner portion of lamina II and was reduced subsequent to dorsal rhizotomy, as well as subsequent to neonatal capsaicin treatment. Finally, P2X3-ir accumulated proximal to the site of sciatic nerve ligation, and was seen in nerve fibres in skin and corneal epithelium. In summary, our results suggest that P2X3 is expressed by a functionally heterogeneous population of BSI-B4-binding sensory neurons, and is transported into both central and peripheral processes of these neurons.  相似文献   

3.
4.
Insulin-like substance has been found within the nervous system. In the rat, preproinsulin II mRNA was shown within the brain and preproinsulin I mRNA within the retina. The present study demonstrates the presence of preproinsulin mRNAs within the 15, 17 and 19 day gestational age fetal rat brain, spinal cord and dorsal root ganglia (DRG), employing RNA template-specific polymerase chain reaction (RS-PCR), semi-nested PCR and RNase protection assay. Preproinsulin I mRNA was present in the 17 and 19 day gestational age brain, spinal cord and DRG, and only in the brain of the 15 day gestational age brain. Preproinsulin II mRNA was present in all the gestational ages studied in the brain, spinal cord and DRG. The RS-PCR and the semi-nested PCR demonstrated products that co-migrated with the pancreatic control. The semi-nested products were characterized as preproinsulin I and II by restriction enzyme digestion and sequence. RNase protection assay using specific cRNA for preproinsulin I and II showed a band that co-migrated with pancreatic preproinsulin I and II mRNAs, and confirmed the PCR results. In addition, insulin receptor mRNA was detected by RS-PCR. Ultrastructural studies showed insulin immunoreaction within the endoplasmic reticulum, Golgi apparatus, cytoplasm, axon, dendrites, and in relation to the synapses. Thus, we demonstrated the presence of preproinsulin I and II mRNA, insulin receptor mRNA and insulin immunoreaction within the rat fetal central and peripheral nervous system.  相似文献   

5.
6.
Antisera were developed that specifically recognize orphanin FQ/nociceptin, the 17 amino acid peptide reported to be the endogenous ligand for the orphan opioid receptor. Immunocytochemical localizations in rat spinal cord demonstrated that orphanin FQ /nociceptin-immunoreactivity (-ir) was abundant in superficial dorsal horn, lateral spinal nucleus and the region dorsal to the central canal, areas that also exhibit prominent enkephalin-and dynorphin-ir. Orphanin FQ/nociceptin-ir was not affected by dorsal rhizotomy, indicating that in spinal cord the peptide is produced by central rather than primary afferent neurons. thus, the distribution of orphanin FQ/nociceptin-ir appeared in neuronal circuits that parallel those containing enkephalin- and dynorphin-ir, with only modest co-existence of these peptides.  相似文献   

7.
To elucidate the mechanisms underlying the projection of dorsal root ganglion (DRG) axons into the dorsal root entry zone in the dorsolateral region of the spinal cord, we examined tissue interactions which affect neurite outgrowth from DRG. We cultured explants or dissociated cells of DRG from embryonic day 4 (E4) chick embryos in combination with E3 spinal cord, notochord, and dermomyotome in three-dimensional collagen gels. The ventral spinal cord, notochord, and dermomyotome, which are located close to the initial projection pathway of DRG but do not receive direct innervation, strongly inhibited DRG neurite outgrowth and repelled DRG neurites. These inhibitory/repulsive cues appear diffusible in nature, because this activity was observed in the absence of direct contacts between tissue explants and DRG neurites. Furthermore, in heterochronic cultures, E9 DRG lost its responsiveness to inhibitory/repulsive factors from E3 ventral spinal cord, while retaining responsiveness to E3 notochord and dermomyotome, suggesting that the E3 ventral spinal cord may secrete a different inhibitory/repulsive signal than notochord and dermomyotome. Putative inhibitory/repulsive signals secreted from tissues along the axonal pathway may serve to guide growing DRG axons to the dorsal root entry zone.  相似文献   

8.
In the present study, we evaluated changes in brain-derived neurotrophic factor (BDNF) immunoreactivity in the rat lumbar (L) 5 dorsal root ganglion (DRG) and areas where afferents from the DRG terminate, the L5 spinal cord and gracile nuclei, following unilateral sciatic nerve transection or crush. From 3 days to 4 weeks following cut or crush injury, the percentage of medium and large BDNF-immunoreactive neurons in the ipsilateral DRG increased significantly compared with those on the contralateral side. Following cut injury, there was no significant change in the percentage of small BDNF-immunoreactive neurons in the ipsilateral DRG; however, the intensity of immunoreactivity of these cells decreased. Following crush injury, however, both the percentage and intensity of small BDNF-immunoreactive neurons in the ipsilateral DRG significantly increased. Following cut injury, the expression of BDNF-immunoreactive axonal fibers decreased markedly in the ipsilateral superficial laminae of the L5 spinal cord and increased significantly in the ipsilateral deeper laminae of the spinal cord and gracile nuclei. Crush injury induced a marked increase in the expression of BDNF-immunoreactive axonal fibers in the superficial laminae of the spinal cord and gracile nuclei. These differences in BDNF response in the DRG and spinal cord after cut or crush injuries may reflect differences in trophic support to the injured DRG neurons and altered neuronal activity in the spinal cord and gracile nuclei following different types of peripheral nerve injury.  相似文献   

9.
In the present study we show that, in contrast to the rat, injection of cholera toxin B-subunit (CTB) into the intact sciatic nerve of Macaca mulatta monkey gives rise to labelling of a sparse network of fibers in laminae I-II of spinal cord and of some mainly small dorsal root ganglion (DRG) neurons. Twenty days after sciatic nerve cut, the percentage of CTB-positive lumbar 5 (L5) DRG neuron profiles increased from 11% to 73% of all profiles. In the spinal cord, a marked increase in CTB labelling was seen in laminae I, II, and the dorsal part of lamina III. In the rat L5 DRGs, 18 days after sciatic nerve cut, the percentage of CTB- and CTB conjugated to horseradish peroxidase (HRP)-labelled neuron profiles increased from 45% to 81%, and from 54% to 87% of all neuron profiles, respectively. Cell size measurements in the rat showed that most of the CTB-positive neuron profiles were small in size after axotomy, whereas most were large in intact DRGs. In the rat spinal dorsal horn, a dense network of CTB-positive fibers covered the whole dorsal horn on the axotomized side, whereas CTB-labelled fibers were mainly seen in laminae III and deeper laminae on the contralateral side. A marked increase in CTB-positive fibers was also seen in the gracile nucleus. The present study shows that in both monkey and rat DRGs, a subpopulation of mainly small neurons acquires the capacity to take up CTB/CTB-HRP after axotomy, a capacity normally not associated with these DRG neurons. These neurons may transganglionically transport CTB and CTB-HRP. Thus, after peripheral axotomy, CTB and CTB-HRP are markers not only for large but also for small DRG neurons and, thus, possibly also for both myelinated and unmyelinated primary afferents in the spinal dorsal horn. These findings may lead to a reevaluation of the concept of sprouting, considered to take place in the dorsal horn after peripheral nerve injury.  相似文献   

10.
Developmental cell death in the nervous system usually is controlled by the availability of target-derived trophic factors. It is well established that dorsal root ganglia (DRG) neurons require the presence of their peripheral target for survival, but because of their central projections, it is possible that the spinal cord also may be required. Before examining this possibility in rat embryos, we first used terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) to determine that thoracic DRG cell death occurred from embryonic day 15 (E15) to E18. To determine the target requirements of DRG neurons, we used organotypic slice cultures of E15 thoracic trunk segments. After peripheral target removal, essentially all DRG neurons disappeared within 5 d. In contrast, after removal of the spinal cord, approximately half of the DRG neurons survived for at least 8 d. Hence, some E15 DRG neurons could survive without the spinal cord. However, those DRG neurons that died after spinal cord ablation apparently required trophic factors from both central and peripheral targets, because the presence of only one of these tissues was not adequate by itself to support this cell group. Addition of neurotrophin-3 (NT-3) to the culture medium rescued some DRG neurons after CNS removal, suggesting a possible role for NT-3 in vivo. In other experiments, cultures were established from older (E16) embryos, and essentially all neurons survived after spinal cord ablation, even without added factors. These and other experiments indicated that approximately 65% of DRG neurons are transiently dependent on the CNS early in development.  相似文献   

11.
12.
The possibility that trauma to the dorsal horn may affect the release and distribution of enkephalin was examined using the opioid peptide Met-Enk-Arg6-Phe7 (MEAP) as a marker in a rat model. The peptide content of samples of spinal cord and whole brain was measured using a radioimmunoassay (RIA) technique. In addition, the possible functional relation between this peptide and serotonin was evaluated using a pharmacological approach that included depletion of endogenous serotonin. A focal trauma to the right dorsal horn in the T10-11 segments (2 mm deep and 5 mm long) markedly modified the content of MEAP of the adjacent rostral and caudal segments of the cord, as well as the content of MEAP of the brain. Depletion of serotonin with p-CPA (an inhibitor of the synthesis of serotonin) significantly elevated the content of MEAP in the whole brain without affecting the regions of the spinal cord (except T9 level which showed a 25% decrease from an intact control group). Trauma to the spinal cord in the serotonin-depleted animals did not alter the content of MEAP further, as compared to a p-CPA-treated but untraumatized group. These results indicate that enkephalin (i) participates in the pathophysiology of spinal cord trauma and (ii) suggest that the peptide is somehow functionally related with serotonin.  相似文献   

13.
There are presently two competitive theories that attempt to explain the etiology of multiple sclerosis (MS). Briefly summarized, they are: 1. An infection, probably of viral type, may attack the oligodendroglia of the central nervous system; or, 2. An autoimmune process may begin with an infection of the peripheral lymphatic immune system, producing antibodies that cross the blood-brain barrier, leading to myelinoclasia. Since 1935, research has been directed toward myelin of the central nervous system and the myelin sheaths of peripheral nerve; however, dorsal root and cranial sensory ganglia (DRG) have apparently not been studied. The present hypothesis states that an infectious agent (probably viral) finds privileged sanctuary in the dorsal root and cranial sensory ganglia (DRG): thereafter periodically invading the spinal cord, brain, or peripheral nerve. Previously reported erratic spinal fluid viral titers and cultures can be explained by differences in the anatomy of the DRG in which there is a variable and limited contact of spinal fluid with sensory ganglia. Clues to this hypothesis were noted by the author during routine neurological examinations of patients with MS, in which sensory signs and symptoms were frequently encountered. This clinical observation has also been reported by others who found such symptoms in 75% of MS patients, ranking second only to incoordination.  相似文献   

14.
The injured adult mammalian spinal cord shows little spontaneous recovery after injury. In the present study, the contribution of projections in the dorsal half of the spinal cord to functional loss after adult spinal cord injury was examined, together with the effects of transgenic cellular delivery of neurotrophin-3 (NT-3) on morphological and functional disturbances. Adult rats underwent bilateral dorsal column spinal cord lesions that remove the dorsal corticospinal projections or underwent more extensive resections of the entire dorsal spinal cord bilaterally that remove corticospinal, rubrospinal, and cerulospinal projections. Long-lasting functional deficits were observed on a motor grid task requiring detailed integration of sensorimotor skills, but only in animals with dorsal hemisection lesions as opposed to dorsal column lesions. Syngenic primary rat fibroblasts genetically modified to produce NT-3 were then grafted to acute spinal cord dorsal hemisection lesion cavities. Up to 3 months later, significant partial functional recovery occurred in NT-3-grafted animals together with a significant increase in corticospinal axon growth at and distal to the injury site. These findings indicate that (1) several spinal pathways contribute to loss of motor function after spinal cord injury, (2) NT-3 is a neurotrophic factor for the injured corticospinal projection, and (3) functional deficits are partially ameliorated by local cellular delivery of NT-3. Lesions of the corticospinal projection may be necessary, but insufficient in isolation, to cause sensorimotor dysfunction after spinal cord injury in the rat.  相似文献   

15.
Secretoneurin is a recently discovered neuropeptide derived from secretogranin II (SgII). Since this peptide could be detected in the dorsal horn of the spinal cord we studied whether it is localized in and released from primary afferent neurons. Secretoneurin was investigated with immunocytochemistry and radioimmunoassay in spinal cord, dorsal root ganglia and peripheral organs. SgII mRNA was determined in dorsal root ganglia. Normal rats and rats pre-treated neonatally with capsaicin to destroy selectively polymodal nociceptive (C-) fibres were used. Slices of dorsal spinal cord were perfused in vitro for release experiments. Immunocytochemistry showed a distinct distribution of secretoneurin-immunoreactivity (IR) in the spinal cord and, lower brainstem. A particularly high density of fibres was found in lamina I and outer lamina II of the caudal trigeminal nucleus and of the spinal cord. This distribution was qualitatively identical in rat and human post-mortem tissue. Numerous small diameter and some large dorsal root ganglia neurons were found to contain SgII mRNA. Capsaicin treatment led to a marked depletion of secretoneurin-IR in the substantia gelatinosa, but not in other immunopositive areas of the spinal cord and to a substantial loss of small (< 25 microns) SgII-mRNA-containing dorsal root ganglia neurons. Radioimmunoassay revealed a significant decrease of secretoneurin-IR in the dorsal spinal cord, the trachea, heart and urinary bladder of capsaicin-treated rats. Perfusion of spinal cord slices with capsaicin as well as with 60 mM potassium led to a release of secretoneurin-IR. In conclusion, secretoneurin is a neuropeptide which is stored in and released from capsaicin-sensitive, primary afferent (C-fibre) neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The response of the mature central nervous system (CNS) to injury differs significantly from the response of the peripheral nervous system (PNS). Axotomized PNS neurons generally regenerate following injury, while CNS neurons do not. The mechanisms that are responsible for these differences are not completely known, but both intrinsic neuronal and extrinsic environmental influences are likely to contribute to regenerative success or failure. One intrinsic factor that may contribute to successful axonal regeneration is the induction of specific genes in the injured neurons. In the present study, we have evaluated the hypothesis that expression of the immediate early gene c-jun is involved in a successful regenerative response. We have compared c-Jun expression in dorsal root ganglion (DRG) neurons following central or peripheral axotomy. We prepared animals that received either a sciatic nerve (peripheral) lesion or a dorsal rhizotomy in combination with spinal cord hemisection (central lesion). In a third group of animals, several dorsal roots were placed into the hemisection site along with a fetal spinal cord transplant. This intervention has been demonstrated to promote regrowth of severed axons and provides a model to examine DRG neurons during regenerative growth after central lesion. Our results indicated that c-Jun was upregulated substantially in DRG neurons following a peripheral axotomy, but following a central axotomy, only 18% of the neurons expressed c-Jun. Following dorsal rhizotomy and transplantation, however, c-Jun expression was upregulated dramatically; under those experimental conditions, 63% of the DRG neurons were c-Jun-positive. These data indicate that c-Jun expression may be related to successful regenerative growth following both PNS and CNS lesions.  相似文献   

17.
To study the density of nicotinic acetylcholine receptors on primary afferents and central nociceptive pathways, [3H](-)-nicotine binding was conducted in the cerebral cortex and spinal cord including dorsal roots and ganglia (DRG), of control rats and rats desensitized by neonatal capsaicin treatment. [3H](-)-nicotine binding in capsaicin-treated rats was reduced in cerebral cortex by 35% and spinal cord+DRG by 46% (p < 0.05). Functionally, both iontophoretically applied acetylcholine- and capsaicin-evoked flares (measured by laser Doppler flowmetry) were reduced in capsaicin-treated animals (p < 0.05); similarly, electrical stimulation-evoked flares were significantly lower in the same group, compared with controls (p < 0.05). These data provide direct evidence that many neuronal nicotinic acetylcholine receptors are associated with capsaicin-sensitive peptidergic neurones, including primary afferents, DRG and central nociceptive pathways.  相似文献   

18.
The novel sodium channel PN3/alpha-SNS, which was cloned from a rat dorsal root ganglion (DRG) cDNA library, is expressed predominantly in small sensory neurons and may contribute to the tetrodotoxin-resistant (TTXR) sodium current that is believed to be associated with central sensitization in chronic neuropathic pain states. To assess further the role of PN3, we have used electrophysiological, in situ hybridization and immunohistochemical methods to monitor changes in TTXR sodium current and the distribution of PN3 in normal and peripheral nerve-injured rats. (1) Whole-cell patch-clamp recordings showed that there were no significant changes in the TTXR and TTX-sensitive sodium current densities of small DRG neurons after chronic constriction injury (CCI) of the sciatic nerve. (2) Additionally, in situ hybridization showed that there was no change in the expression of PN3 mRNA in the DRG up to 14 d after CCI. PN3 mRNA was not detected in sections of brain and spinal cord taken from either normal or nerve-injured rats. (3) In contrast, immunohistochemical studies showed that major changes in the subcellular distribution of PN3 protein were caused by either CCI or complete transection of the sciatic nerve. The intensity of PN3 immunolabeling decreased in small DRG neurons and increased in sciatic nerve axons at the site of injury. The alteration in immunolabeling was attributed to translocation of presynthesized, intracellularly located PN3 protein from neuronal somata to peripheral axons, with subsequent accumulation at the site of injury. The specific subcellular redistribution of PN3 after peripheral nerve injury may be an important factor in establishing peripheral nerve hyperexcitability and resultant neuropathic pain.  相似文献   

19.
To understand the role of opioids and their receptors in chronic pain following peripheral nerve injury, we have studied the mu-opioid receptor in rat and monkey lumbar 4 and 5 dorsal root ganglion neurons and the superficial dorsal horn of the spinal cord under normal circumstances and after peripheral axotomy. Our results show that many small neurons in rat and monkey dorsal root ganglia, and some medium-sized and large neurons in rat dorsal root ganglia, express mu-opioid receptor-like immunoreactivity. Most of these neurons contain calcitonin gene-related peptide. The mu-opioid receptor was closely associated with the somatic plasmalemma of the dorsal root ganglion neurons. Both mu-opioid receptor-immunoreactive nerve fibers and cell bodies were observed in lamina II of the dorsal horn. The highest intensity of mu-opioid receptor-like immunoreactivity was observed in the deep part of lamina II. Most mu-opioid receptor-like immunoreactivity in the dorsal horn originated from spinal neurons. A few mu-opioid receptor-positive peripheral afferent terminals in the rat and monkey dorsal horn were calcitonin gene-related peptide-immunoreactive. In addition to pre- and post-junctional receptors in rat and monkey dorsal horn neurons, mu-opioid receptors were localized on the presynaptic membrane of some synapses of primary afferent terminals in the monkey dorsal horn. Peripheral axotomy caused a reduction in the number and intensity of mu-opioid receptor-positive neurons in the rat and monkey dorsal root ganglia, and of mu-opioid receptor-like immunoreactivity in the dorsal horn of the spinal cord. The decrease in mu-opioid receptor-like immunoreactivity was more pronounced in the monkey than in the rat dorsal root ganglia and spinal cord. It is probable that there was a parallel trans-synaptic down-regulation of mu-opioid-like immunoreactivity in local dorsal horn neurons of the monkey. These data suggest that one factor underlying the well known insensitivity of neuropathic pain to opioid analgesics could be due to a marked reduction in the number of mu-opioid receptors in the axotomized sensory neurons and in interneurons in the dorsal horn of the spinal cord.  相似文献   

20.
Following dorsal root crush, the lesioned axons regenerate in the peripheral compartment of the dorsal root, but stop at the boundary between the peripheral and the central nervous system, the dorsal root transitional zone. We have previously shown that fibres from human fetal dorsal root ganglia grafted to adult rat hosts are able to grow into the spinal cord, but were not able to specify the route taken by the ingrowing fibres. In this study we have challenged the dorsal root transitional zone astrocyte boundary with human dorsal root ganglion transplants from 5-8-week-old embryos. By tracing immunolabelled human fibres in serial sections, we found that fibres consistently grow around the dorsal root transitional zone astrocytes in laminin-rich peripheral surroundings, and extend into the host rat spinal cord along blood vessels, either into deep or superficial laminae of the dorsal horn, or into the dorsal funiculus. Human fibres that did not have access to blood vessels grew on the spinal cord surface. These findings indicate, that in spite of a substantial growth capacity by axons from human embryonic dorsal root ganglion cells as well as their tolerance to non-permissive factors in the mature mammalian CNS, these axons are still sensitive to the repellent effects of astrocytes of the mature dorsal root transitional zone. Furthermore, this axonal ingrowth is consistently associated with laminin-expressing structures until the axons reach the host spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号