首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The control of nanofiber orientation in nanofibrous tubular scaffolds can benefit the cell responses along specific directions. For small diameter tubular scaffolds, however, it becomes difficult to engineer nanofiber orientation. This paper reports a novel electrospinning technique for the fabrication of 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations. Synthetic absorbable poly-ε-caprolactone (PCL) was used as the model biomaterial to demonstrate this new electrospinning technique. Electrospun 3-D PCL nanofibrous tubular scaffolds of 4.5 mm in diameter with different nanofiber orientations (viz. circumferential, axial, and combinations of circumferential and axial directions) were successfully fabricated. The degree of nanofiber alignment in the electrospun 3-D tubular scaffolds was quantified by using the fast Fourier transform (FFT) analysis. The results indicated that excellent circumferential nanofiber alignment could be achieved in the 3-D nanofibrous PCL tubular scaffolds. The nanofibrous tubular scaffolds with oriented nanofibers had not only directional mechanical property but also could facilitate the orientation of the endothelial cell attachment on the fibers. Multiple layers of aligned nanofibers in different orientations can produce 3-D nanofibrous tubular scaffolds of different macroscopic properties.  相似文献   

2.
Hydrogel-based biomaterial systems have great potential for tissue reconstruction by serving as temporary scaffolds and cell delivery vehicles for tissue engineering (TE). Hydrogels have poor mechanical properties and their rapid degradation limits the development and application of hydrogels in TE. In this study, nanofiber reinforced composite hydrogels were fabricated by incorporating electrospun poly(ε-caprolactone) (PCL)/gelatin 'blend' or 'coaxial' nanofibers into gelatin hydrogels. The morphological, mechanical, swelling and biodegradation properties of the nanocomposite hydrogels were evaluated and the results indicated that the moduli and compressive strengths of the nanofiber reinforced hydrogels were remarkably higher than those of pure gelatin hydrogels. By increasing the amount of incorporated nanofibers into the hydrogel, the Young's modulus of the composite hydrogels increased from 3.29 ± 1.02 kPa to 20.30 ± 1.79 kPa, while the strain at break decreased from 66.0 ± 1.1% to 52.0 ± 3.0%. Compared to composite hydrogels with coaxial nanofibers, those with blend nanofibers showed higher compressive strength and strain at break, but with lower modulus and energy dissipation properties. Biocompatibility evaluations of the nanofiber reinforced hydrogels were carried out using bone marrow mesenchymal stem cells (BM-MSCs) by cell proliferation assay and immunostaining analysis. The nanocomposite hydrogel with 25 mg ml(-1) PCL/gelatin 'blend' nanofibers (PGB25) was found to enhance cell proliferation, indicating that the 'nanocomposite hydrogels' might provide the necessary mechanical support and could be promising cell delivery systems for tissue regeneration.  相似文献   

3.
Nanofibrous substrates of synthetic polymers including polycaprolactone (PCL) have shown considerable potential in tissue regeneration. This paper reports the use of PCL/collagen nanofibers to improve the in vitro osteoblastic responses for the applications in bone regeneration area. Collagen and PCL were dissolved in a co-solvent, and the resulting solution was electrospun into a nanofibrous web. Nonwoven fibrous matrices were successfully produced at various compositional ratios (PCL/collagen = 1/3, 1 and 3 by weight). Although the PCL nanofiber was hydrophobic, the presence of collagen significantly improved the water affinity, such as the water contact angle and water uptake capacity. Tensile mechanical tests showed that the collagen–PCL nanofiber had a significantly higher extension rate (approximately 2.8-fold) than the PCL while maintaining the maximum tensile load in a similar range. The osteoblastic cells cultured on the collagen–PCL nanofibrous substrate showed better initial adhesion and a higher level of growth than those cultured on the PCL nanofiber. Furthermore, real-time RT-PCR revealed the expression of a series of bone-associated genes, including osteopontin, collagen type I and alkaline phosphatase. The expression of these genes was significantly higher on the collagen–PCL nanofiber than on the PCL nanofiber. When subcutaneously implanted in mouse the collagen–PCL membrane facilitated tissue cells to well penetrate into the nanofibrous structure at day 7, whilst no such cell penetration was noticed in the pure PCL nanofiber. Overall, the presence of collagen within the PCL nanofiber improves the water affinity, tensile extension rate, and the tissue cell responses, such as initial adhesion, growth, penetration and the expression of bone-associated genes. Therefore, the collagen–PCL nanofibrous membrane may have potential applications in the cell growth and bone tissue regeneration.  相似文献   

4.
Patel S  Kurpinski K  Quigley R  Gao H  Hsiao BS  Poo MM  Li S 《Nano letters》2007,7(7):2122-2128
Biodegradable nanofibers have tremendous potential for tissue repair. However, the combined effects of nanofiber organization and immobilized bioactive factors on cell guidance are not well understood. In this study, we developed aligned and bioactive nanofibrous scaffolds by immobilizing extracellular matrix protein and growth factor onto nanofibers, which simulated the physical and biochemical properties of native matrix fibrils. The aligned nanofibers significantly induced neurite outgrowth and enhanced skin cell migration during wound healing compared to randomly oriented nanofibers. Furthermore, the immobilized biochemical factors (as efficient as soluble factors) synergized with aligned nanofibers to promote highly efficient neurite outgrowth but had less effect on skin cell migration. This study shed light on the relative importance of nanotopography and chemical signaling in the guidance of different cell behavior.  相似文献   

5.
The uniform and highly smooth nanofibers of poly(ε-caprolactone) (PCL) composited with different multi-walled carbon nanotubes (MWCNTs) content (ranging from 0.1 wt.% to 5 wt.%) were successfully prepared by electrospinning method without the occurrence of bead defects in this study. The PCL–0.5 wt.%MWCNTs nanofiber membrane exhibited the maximum tensile strength (about 1.42 MPa), which was increased by 46% compared with that of electrospun pure PCL nanofiber membrane. Moreover, the PCL–MWCNTs nanofiber membrane exhibited three-dimensional porous structure with a high porosity over 90%. The average diameter of PCL–MWCNTs nanofibers decreased with the addition of MWCNTs and there was a narrow diameter distribution in the range of 52–244 nm when the amount of MWCNTs was 0.5 wt.%. Compared with pure PCL nanofibers, PCL–MWCNTs nanofibers showed accelerating degradation behavior. In addition, the cytotoxicity results revealed that the electrospun PCL–MWCNTs nanofiber membranes possessed good in vitro biocompatibility, and hemolysis and kinetic clotting tests indicated that the PCL nanofiber membranes did not enhance blood coagulation after the addition of MWCNTs. It can be concluded that such kind of electrospun PCL–MWCNTs nanofibers may be promising candidate for tissue engineering scaffold application.  相似文献   

6.
Electrospun gelatin and poly-ε-caprolactone (PCL) nanofibers were prepared using needleless technology and their biocompatibility and therapeutic efficacy have been characterized in vitro in cell cultures and in an experimental model of a skin wound. Human dermal fibroblasts, keratinocytes and mesenchymal stem cells seeded on the nanofibers revealed that both nanofibers promoted cell adhesion and proliferation. The effect of nanofibers on wound healing was examined using a full thickness wound model in rats and compared with a standard control treatment with gauze. Significantly faster wound closure was found with gelatin after 5 and 10 days of treatment, but no enhancement with PCL nanofibers was observed. Histological analysis revealed enhanced epithelialisation, increased depth of granulation tissue and increased density of myofibroblasts in the wound area with gelatin nanofibers. The results show that gelatin nanofibers produced by needleless technology accelerate wound healing and may be suitable as a scaffold for cell transfer and skin regeneration.  相似文献   

7.
Polycaprolactone (PCL), poly (lactic acid) (PLA) and hydroxyapatite (HA) are frequently used as materials for tissue engineering. In this study, PCL/PLA/HA nanofiber mats with different weight ratio were prepared using electrospinning. Their structure and morphology were studied by FTIR and FESEM. FTIR results demonstrated that the HA particles were successfully incorporated into the PCL/PLA nanofibers. The FESEM images showed that the surface of fibers became coarser with the introduction of HA nanoparticles into PCL/PLA system. Furthermore, the addition of HA led to the decreasing of fiber diameter. The average diameters of PCL/PLA/HA nanofiber were in the range of 300-600 nm, while that of PCL/PLA was 776 +/- 15.4 nm. The effect of nanofiber composition on the osteoblast-like MC3T3-E1 cell adhesion and proliferation were investigated as the preliminary biological evaluation of the scaffold. The MC3T3-E1 cell could be attached actively on all the scaffolds. The MTT assay revealed that PCL/PLA/HA scaffold shows significantly higher cell proliferation than PCL/PLA scaffolds. After 15 days of culture, mineral particles on the surface of the cells was appeared on PCL/PLA/HA nanofibers while normal cell spreading morphology on PCL/PLA nanofibers. These results manifested that electrospun PCL/PLA/HA scaffolds could enhance bone regeneration, showing their marvelous prospect as scaffolds for bone tissue engineering.  相似文献   

8.
Recently, attempts have been made to develop nanofiber tubes suitable for nerve regeneration made of biodegradable nanofibers. Among all polymeric nanofibers, poly(ε-caprolactone) (PCL) is distinctively known for better mechanical stability and poly(l-lactic acid) (PLLA) for relatively faster biodegradability. Our purpose of study is to investigate their blending compatibility and the ability to form nanofiber tubes via electrospinning. We electrospun the PCL–PLLA nanofiber tubular using different blend ratios of PCL–PLLA. The electrospun nanofibers were continuously deposited over high speed rotating mandrel to fabricate nanofiber tubes having inner diameter of 2 mm and the wall thickness of 55–65 μm. The diameters of nanofibers were between 715 and 860 nm. The morphologies of PCL–PLLA nanofiber tubes were examined under scanning electron microscope, and showed better structural stability and formability than the neat PLLA nanofibers. Fourier transform infrared spectroscopy study revealed that the PCL–PLLA blend nanofiber exhibited characteristic peaks of both PCL and PLLA and was composition-dependent. Raman and X-ray diffraction studies showed that the increasing PCL ratio in the PCL–PLLA blend increased crystallinity of PCL–PLLA blends. Differential scanning calorimetry revealed recrystallization peaks in PCL–PLLA blends ratios of 1:2 and 1:1. Based on characterization, the electrospun PCL–PLLA nanofiber tubes is considered to be a better candidate for further in vivo or in vitro investigation, and resolve biocompatibility issues in tissue engineering.  相似文献   

9.
The gelatin–glutaraldehyde (gelatin–GA) nanofibers were electrospun in order to overcome the defects of ex-situ crosslinking process such as complex process, destruction of fiber morphology and decrease of porosity. The morphological structure, porosity, thermal property, moisture absorption and moisture retention performance, hydrolytic resistance, mechanical property and biocompatibility of nanofiber scaffolds were tested and characterized. The gelatin–GA nanofiber has nice uniform diameter and more than 80% porosity. The hydrolytic resistance and mechanical property of the gelatin–GA nanofiber scaffolds are greatly improved compared with that of gelatin nanofibers. The contact angle, moisture absorption, hydrolysis resistance, thermal resistance and mechanical property of gelatin–GA nanofiber scaffolds could be adjustable by varying the gelatin solution concentration and GA content. The gelatin–GA nanofibers had excellent properties, which are expected to be an ideal scaffold for biomedical and tissue engineering applications.  相似文献   

10.
以浓度为88%的甲酸溶液作为纺丝溶剂,采用静电纺丝和紫外光照射还原的方法制备了含纳米银颗粒的明胶/壳聚糖纳米纤维。研究发现,壳聚糖的加入量低于明胶质量的3/16时可以得到纳米纤维,纤维平均直径随着硝酸银加入量的增大而减小,纤维表面纳米银的平均直径随着硝酸银加入量的增大而增大,在纺丝体系中硝酸银的加入量存在一个极限值。所制得含纳米银的明胶/壳聚糖纳米纤维对金黄色葡萄球菌和绿脓杆菌具有较好的抑菌性能,纺丝时加入1%硝酸银制得纳米纤维膜的抑菌率达到99%以上,这种抗菌型纳米纤维可以应用于医用敷料等领域。  相似文献   

11.
Poly(ε-caprolactone) (PCL) electrospun nanofibers have been reported as a scaffold for tissue engineering application. However, high hydrophobicity of PCL limits use of functional scaffold. In this study, PCL/polyethylenimine (PEI) blend electrospun nanofibers were prepared to overcome the limitation of PCL ones because the PEI as a cationic polymer can increase cell adhesion and can improve the electrospinnability of PCL. The structure, mechanical properties and biological activity of the PCL/PEI electrospun nanofibers were studied. The diameters of the PCL/PEI nanofibers ranged from 150.4 ± 33 to 220.4 ± 32 nm. The PCL/PEI nanofibers showed suitable mechanical properties with adequate porosity and increased hydrophilic behavior. The cell adhesion and cell proliferation of PCL nanofibers were increased by blending with PEI due to the hydrophilic properties of PEI.  相似文献   

12.
Nanofibrous biomaterials made of degradable polymers, including poly(?-caprolactone) (PCL), are considered as a potential substrate for populating and differentiating tissue cells. The surface modification of biomaterials is of utmost importance in regulating cell functions. This study examined the effects of an apatite-mineralization of the PCL nanofiber surface on the growth behavior and osteogenic differentiation of rat bone-marrow stromal cells (rBMSCs). BMSCs isolated from adult rats were seeded on the PCL nanofiber with mineralization (PCLnf-M) and without it as a control (PCLnf), and cultured for up to 28 days. Initially (for 1 h), the cells adhered better on the PCLnf-M than on the control, showing favorable cell affinity to the mineralized nanofibrous surface. The secretion of collagen by the cells was shown to increase with culturing time on both types of the nanofiber. The cell viability was similar at day 7 but was higher on the control at a prolonged period of day 14. However, the alkaline phosphatase (AP) activity was noticed to significantly higher level on the PCLnf-M than on the control at days 14 and 28. Overall, the surface-mineralized PCL nanofibrous substrate was shown to support the adhesion and growth of BMSCs and to stimulate the differentiation into an osteogenic lineage. This type of nanofibrous sheet is considered to be useful as a matrix for the regeneration and engineering of skeletal tissues.  相似文献   

13.
Highly aligned polyimide (PI) and PI nanocomposite fibers containing carbon nanotubes (CNTs) were produced by electrospinning. Scanning electron microscopy showed the electrospun nanofibers were uniform and almost free of defects. Transmission electron microscopy indicated that the CNTs were finely dispersed and highly oriented along the CNT/PI nanofiber axis at a relatively low concentration. The as-prepared well-aligned electrospun nanofibers were then directly used as homogeneity reinforcement to enhance the tensile strength and toughness of PI films. The neat PI nanofiber reinforced PI films showed good transparency, decreased bulk density and significantly improved mechanical properties. Compared with neat PI film prepared by solution casting, the tensile strength and elongation at break for the PI film reinforced with 2 wt.% CNT/PI nanofibers were remarkably increased by 138% and 104%, respectively. The significant increases in the overall mechanical properties of the nanofibers reinforced polyimide films can be ascribed to good compatibility between the electrospun nanofibers and the matrix as well as high nanofiber orientation in the matrix. Our study demonstrates a good example for fabricating high performance and high toughness polyimide nanocomposites by using this facile homogeneity self-reinforcement method.  相似文献   

14.
Given that many people suffer from large-area skin damage, skin regeneration is a matter of high concern. Here, an available method is developed for the formation of large-area robust skins through three stages: fabrication of a biodegradable sealant-loaded nanofiber scaffold (SNS), skin tissue reconstruction, and skin regeneration. First, a microfluidic blow-spinning strategy is proposed to fabricate a large-scale nanofiber scaffold with an area of 140 cm × 40 cm, composed of fibrinogen-loaded polycaprolactone/silk fibroin (PCL/SF) ultrafine core–shell nanofibers with mean diameter of 65 nm. Then, the SNS forms, where the gelling reaction of fibrin sealant occurs in situ between thrombin and fibrinogen on PCL/SF nanofiber surface, to promote the migration and proliferation of fibroblasts, accelerating skin regeneration. Through an in vivo study, it is shown that the SNS can rapidly repair acute tissue damage such as vascular bleeding and hepatic hemorrhage, and also promote angiogenesis, large-area abdominal wall defect repair, and wound tissue regeneration for medical problems in the world. Besides, it avoids the risk of immune rejection and secondary surgery in clinical applications. This strategy offers a facile route to regenerate large-scale robust skin, which shows great potential in abdominal wall defect repair.  相似文献   

15.
In the present study, composite nanofibrous tissue engineering-scaffold consisting of polycaprolactone and gelatin, was fabricated by electrospinning method, using a new cost-effective solvent mixture: chloroform/methanol for polycaprolactone (PCL) and acetic acid for gelatin. The morphology of the nanofibrous scaffold was investigated by using field emission scanning electron microscopy (FE-SEM) which clearly indicates that the morphology of nanofibers was influenced by the weight ratio of PCL to gelatin in the solution. Uniform fibers were produced only when the weight ratio of PCL/gelatin is sufficiently high (10:1). The scaffold was further characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, and X-ray diffraction (XRD). FT-IR and TG analysis indicated some interactions between PCL and gelatin molecules within the scaffold, while XRD results demonstrated crystalline nature of PCL/gelatin composite scaffold. Cytotoxicity effect of scaffold on L929 mouse fibroblast cells was evaluated by MTT assay and cell proliferation on the scaffold was confirmed by DNA quantification. Positive results of MTT assay and DNA quantification L929 mouse fibroblast cells indicated that the scaffold made from the combination of natural polymer (gelatin) and synthetic polymer (PCL) may serve as a good candidate for tissue engineering applications.  相似文献   

16.
In this study, two types of polyimide (PI) nanofiber mats, including (1) the mats consisting of (almost) randomly overlaid PI nanofibers and (2) the mats consisting of highly aligned PI nanofibers, were prepared by the materials-processing technique of electrospinning. The nanofiber mats were subsequently used to develop composites with polyamide 6 (PA6) via the composites – fabrication method of polymer melt infiltration lamination (PMIL). Owing to superior mechanical properties (i.e., the tensile strength and modulus were 1.7 GPa and 37.0 GPa, respectively) and large specific surface area of electrospun PI nanofibers, the PI/PA6 composites with PI nanofiber mats as skeletal framework demonstrated excellent mechanical properties. In particular, the PI/PA6 composite containing 50 wt.% of aligned PI nanofibers had the tensile strength and modulus of 447 MPa and 3.0 GPa along the longitudinal direction, representing ~700% and ~500% improvements as compared to neat PA6.  相似文献   

17.
Over the last decade tissue engineering has emerged as a powerful alternative to regenerate lost tissues owing to trauma or tumor. Evidence shows that Schwann cell containing scaffolds have improved performance in vivo as compared to scaffolds that depend on cellularization post implantation. However, owing to limited supply of cells from the patients themselves, several approaches have been taken to enhance cell proliferation rates to produce complete and uniform cellularization of scaffolds. The most common approach is the application of a bioreactor to enhance cell proliferation rate and therefore reduce the time needed to obtain sufficiently significant number of glial cells, prior to implantation.In this study, we show the application of a rotating wall bioreactor system for studying Schwann cell proliferation on nanofibrous spiral shaped scaffolds, prepared by solvent casting and salt leaching techniques. The scaffolds were fabricated from polycaprolactone (PCL), which has ideal mechanical properties and upon degradation does not produce acidic byproducts. The spiral scaffolds were coated with aligned or random nanofibers, produced by electrospinning, to provide a substrate that mimics the native extracellular matrix and the essential contact guidance cues.At the 4 day time point, an enhanced rate of cell proliferation was observed on the open structured nanofibrous spiral scaffolds in a rotating wall bioreactor, as compared to static culture conditions. However, the cell proliferation rate on the other contemporary scaffolds architectures such as the tubular and cylindrical scaffolds show reduced cell proliferation in the bioreactor as compared to static conditions, at the same time point. Moreover, the rotating wall bioreactor does not alter the orientation or the phenotype of the Schwann cells on the aligned nanofiber containing scaffolds, wherein, the cells remain aligned along the length of the scaffolds. Therefore, these open structured spiral scaffolds pre-cultured with Schwann cells, in bioreactors could potentially shorten the time needed for grafts for peripheral nerve regeneration.  相似文献   

18.
Electrospun Nanofiber sheets have been shown to mimic the structure of extracellular matrix (ECM). Although these nanofibers have shown great potential for use as tissue engineering scaffolds, it is difficult for the electrospun nanofiber based sheets to be shaped into the desired three-dimensional structure. In this study, poly(L-lactic acid) (PLLA), a biodegradable and biocompatible polyester, was electrospun to produce nanofibers that were treated with an amino group containing base in order to fabricate polymeric nanocylinders. The aspect ratio of the PLLA nanocylinders was tunable by varying the aminolysis time and density of the amino group containing base. The effects of changes in nanofibrous morphology of the PLLA nanocylinders/macro-porous gelatin scaffolds on cell adhesion and proliferation were evaluated. The results revealed different cell morphology, adhesion, and proliferation in the nanocylinders composite gelatin scaffold versus gelatin scaffold alone. Confocal laser scanning microscopy observation showed more spreading and a more flattened cell morphology after NIH3T3 cells were cultured on PLLA nanocylinders/gelatin scaffolds for 10 hours and 4 days. These results indicate that the gelatin/PLLA nanocylinder composite is a promising way to fabricate 3D nanofibrous scaffolds that accelerates cell adhesion and proliferation for tissue engineering.  相似文献   

19.
Mechanochromic polymeric systems are intensively investigated for real‐time stress detection applications. However, an effective stress‐sensing material must respond to low deformation with a detectable color change that should be quickly reversible upon force unloading. In this work, mechanochromic nanofibers made by electrospinning are used to produce mechanochromic nanofiber/poly(dimethylsiloxane) (PDMS) composites with isotropic and anisoptropic response. Due to chain alignment of spiropyran copolymer chains within the nanofibers, only very small strains are required to yield a mechanochromic response. Composites with aligned and isotropic nanofibers show anisotropic and isotropic mechanochromic behavior, respectively. Due to the special substitution pattern of spiropyran in the copolymer, the mechanochromic response of these nanofiber/PDMS composites shows fast reversibility upon force unloading. The outstanding benefit of using highly sensitive mechanochromic nanofibers as filler in composite materials allows the detection of directional stress and strain, and it is a step forward in the development of smart, mechanically responsive materials.  相似文献   

20.
Poly(e-caprolactone) (PCL) is a favorable material for tissue engineering. PCL was successfully fabricated into less than 10 μm thin membranes using a 2-roll-heated-mill and biaxial stretching process. However, PCL is known for its poor cellular adhesion and surface modifications are needed for any tissue engineering applications. This paper reports on a novel surface modification technique of the PCL membrane by coating with electrospun nanofibers. The purpose was to mimic the architecture of the natural extracellular matrix and create nanotopography for enhanced cellular attachment. The surfaces were characterized by scanning electron microscopy (SEM), water contact angle and atomic force microscopy. The results showed that uniform nanofibrous topology were successfully achieved on the surface of the PCL membrane, with increased roughness (more than 17 times) and surface area. This nanofibrous topology induced capillary effects after sodium hydroxide (NaOH) treatment, causing the water contact angle to drop to almost zero. Scratch tests revealed a strong interaction of PCL nanofiber coating on the PCL membrane. AlamarBlue assay indicated that 3T3 fibroblast cells proliferated well on the nanofibrous membrane. Confocal Laser Scanning Microscope revealed better cell attachment onto the nanofibrous membranes than the untreated membranes. Results from SEM showed that the cells' spindle-shaped morphology on the NaOH-treated fibrous surface was evident while they remained in isolated spherical shaped entities in the non-treated fibrous surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号