首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Amino acid sequence analysis indicates that the human TR4 orphan receptor (TR4) is a member of the estrogen/thyroid receptor subfamily of the steroid/thyroid receptor superfamily and recognizes the AGGTCA direct repeat (DR) of the hormone response element. Here we demonstrate using the electrophoretic mobility shift assay that TR4 binds specifically to DR with a spacing of 1 and 5 base pairs (DR1 and DR5), which are the response elements for retinoic acid receptor (RAR) and retinoid X receptor (RXR), respectively. A reporter gene assay using chloramphenicol acetyltransferase demonstrated that TR4 repressed RA-induced transactivation in a TR4 dose-dependent manner. Inhibition of the retinoid signal pathway also occurs through natural response elements found in CRBPII and RARbeta genes. Our data suggest that the mechanism of repression may not involve the formation of functionally inactive heterodimers between TR4 and RAR or RXR. Instead, we show that TR4 may compete for hormone response elements with RAR and RXR due to its higher binding affinity. Furthermore, treatment of F9 murine teratocarcinoma (F9) cells with 10(-6) M all-trans-retinoic acid increased TR4 mRNA levels, and this change was accompanied by an increased amount of endogenous TR4 protein that can bind to RXRE in electrophoretic mobility shift assay. Our data therefore strongly suggest that the retinoid signal pathway can be regulated by TR4 in a negative feedback control mechanism, which may restrict retinoic acid signaling to certain elements in a cell-specific fashion.  相似文献   

3.
4.
5.
6.
To clone a new nuclear receptor, we screened a rabbit heart complementary DNA (cDNA) library with degenerate oligonucleotide probes corresponding to the DNA-binding domain of nuclear receptors, which is highly conserved among receptors. One of the cDNA clones, clone 23, encodes a novel protein of 596 amino acids, and predicted molecular mass is 66 kDa. Homology search analysis identified this protein as rabbit TR4 (TR4-0). We also cloned the cDNA encoding a rabbit TR4 isoform (TR4-1), which lacks the putative C-terminal ligand-binding domain (350 amino acids) caused by a 23-bp exon deletion, which probably occurred during messenger RNA (mRNA) splicing. Northern blot analysis showed that TR4s are expressed with two kinds of mRNAs (9.0 kb and 2.8 kb), both of which are relatively abundant in brain, testis, and bone. RT-PCR analysis, using pairs of primers specific for each TR4, showed that both types of receptor express in various tissues. Furthermore, both are present in primary osteoblasts and bone marrow cells, though the mRNA levels of TR4-0 were much higher than those of TR4-1. A functional study, using a transient transfection assay, showed that both receptors suppressed retinoid X receptor (RXR)-retinoid acid receptor, RXR-TR, and RXR-VDR-mediated transactivation significantly in COS-1 and osteosarcoma cells (UMR-106, ROS17/2.8) and that TR4-0 was much more effective than TR4-1. Unexpectedly, we found that the TR4s effectively suppressed estrogen receptor-mediated transactivation in bone cells, but neither in kidney (COS-1) nor breast cancer cells (MCF-7, one of the major target cells of the estrogen action). Thus, the present study shows a novel property of the TR4 orphan receptor, acting as a bone cell-specific repressor in the estrogen receptor-mediated signaling pathway.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Retinoids regulate gene expression through the action of retinoic acid receptors (RARs) and retinoid-X receptors (RXRs), which both belong to the family of nuclear hormone receptors. Retinoids are of fundamental importance during development, but it has been difficult to assess the distribution of ligand-activated receptors in vivo. This is particularly the case for RXR, which is a critical unliganded auxiliary protein for several nuclear receptors, including RAR, but its ligand-activated role in vivo remains uncertain. Here we describe an assay in transgenic mice, based on the expression of an effector fusion protein linking the ligand-binding domain of either RXR or RAR to the yeast Gal4 DNA-binding domain, and the in situ detection of ligand-activated effector proteins by using an inducible transgenic lacZ reporter gene. We detect receptor activation in the spinal cord in a pattern that indicates that the receptor functions in the maturation of limb-innervating motor neurons. Our results reveal a specific activation pattern of Gal4-RXR which indicates that RXR is a critical bona fide receptor in the developing spinal cord.  相似文献   

14.
HL60 cells differentiate to monocytes or neutrophils in response to 1 alpha,25(OH)2-vitamin D3 (D3) and retinoids respectively. D3 and retinoid actions converge since their receptors (VDR, RAR) heterodimerise with a common partner, RXR, which also interacts with thyroid hormone (T3) receptors (T3R). HL60 cells were treated with combinations of D3 and retinoids to induce differentiation and to investigate whether increased VDR or RAR expression correlated with monocyte or neutrophil differentiation and whether altered receptor concentrations affected DNA-binding specificity. As assessed by Western blotting, VDR and RXR expression was unchanged in monocytes relative to controls but levels of RAR and T3R were reduced. In contrast, only VDR expression was reduced in neutrophils. T3 did not promote differentiation or influence its induction by D3 or retinoids and did not affect expression of any receptor. Gel mobility-shift analysis revealed that nuclear extracts from undifferentiated cells, monocytes and neutrophils interacted differently with VDRE-, RARE- and RXRE-binding sites. Monocyte nuclear protein/DNA complexes contain readily detectable VDR and RXR whereas neutrophil complexes contain RAR and RXR. Thus hormone-induced changes in receptor stoichiometry favour either VDR/RXR or RAR/RXR heterodimerisation and correlate with hormone-induced differentiation of HL60 cells to monocytes or neutrophils respectively.  相似文献   

15.
16.
17.
18.
The receptor for 9-cis-retinoic acid, retinoid X receptor (RXR), forms heterodimers with several nuclear receptors, including the receptor for all-trans-retinoic acid, RAR. Previous studies have shown that retinoic acid receptor can be activated in RAR/RXR heterodimers, whereas RXR is believed to be a silent co-factor. In this report we show that efficient growth arrest and differentiation of the human monocytic cell line U-937 require activation of both RAR and RXR. Also, we demonstrate that the allosteric inhibition of RXR is not obligatory and that RXR can be activated in the RAR/RXR heterodimer in the presence of RAR ligands. Remarkably, RXR inhibition by RAR can also be relieved by an RAR antagonist. Moreover, the dose response of RXR agonists differ between RXR homodimers and RAR/RXR heterodimers, indicating that these complexes are pharmacologically distinct. Finally, the AF2 activation domain of both subunits contribute to activation even if only one of the receptors is associated with ligand. Our data emphasize the importance of signaling through both subunits of a heterodimer in the physiological response to retinoids and show that the activity of RXR is dependent on both the identity and the ligand binding state of its partner.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号