首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
王珏  董建新  张麦仓  郑磊 《锻压技术》2012,37(2):143-147
为了研究镍基耐蚀合金G3的后动态再结晶软化行为,在1100~1200℃,0.1~10s-1的变形条件范围内,进行了3种方式的热压缩:变形量为15%和60%单道次热压缩,15%+15%的双道次热压缩和15%热压缩并保温。得出以下结论:在变形温度范围内,15%变形量的第1道次压缩使G3合金发生动态再结晶,使其在后续保温过程中发生由亚动态和静态再结晶共同控制的后动态再结晶软化行为;并进一步得出G3合金的后动态再结晶动力学受应变速率影响,但最终的软化率只随温度而改变;通过15%压缩和保温获得的后动态再结晶组织均匀性低于压缩60%的动态再结晶组织。  相似文献   

2.
在实验温度为300℃和400℃,应变速率为0.01s~(-1)和1s~(-1),每道次应变0.4,道次间隔时间为10~900 s条件下,在Gleeble~(-1)500D热力模拟实验机上进行了锻态Al-Zn-Mg-Cu高强铝合金双道次等温压缩实验,研究了合金改锻试样的流变应力软化行为和微观组织演变。结果表明,该合金的双道次热压缩应力软化程度随着温度的升高而降低,随着应变速率的升高而增大,随着道次保温时间延长而升高。400℃时,由于合金在变形过程中的完全回复和再结晶,释放了大部分变形储能,道次间应力软化不明显,且不受应变速率和保温时间的影响;300℃、1 s~(-1)条件下道次间的应力软化程度最为明显,保温10~240 s期间产生的应力软化主要是由再结晶晶粒的长大引起的,240~900 s期间的应力软化主要受析出相的影响。  相似文献   

3.
3104铝合金高温热压缩过程的再结晶   总被引:2,自引:1,他引:1  
在Gleeble-1500热模拟机上对3104铝合金进行双道次等温热压缩实验,变形温度为400和500 ℃,变形速率为0.01和0.1 s-1,道次的变形量均为0.4,道次间保温时间为30、60和120 s.结果表明:3104铝合金在400 ℃以上的双道次热变形过程中,发生动态与静态软化.道次间的软化率随着变形温度和应变速率的增加,以及道次间停留时间的延长和道次间保持温度的升高而增大.运用双道次软化率建立了3104铝合金热变形再结晶模型,其再结晶激活能为155 kJ/mol.  相似文献   

4.
Al-Cu-Mg-Ag合金热压缩变形的流变应力行为和显微组织   总被引:3,自引:0,他引:3  
采用热模拟实验对Al-Cu-Mg-Ag耐热铝合金进行热压缩实验,研究合金在热压缩变形中的流变应力行为和变形组织.结果表明:Al-Cu-Mg-Ag耐热铝合金在热压缩变形中的流变应力随着温度的升高而减小,随着应变速率的增大而增大;该合金的热压缩变形流变应力行为可用双曲正弦形式的本构方程来描述,其变形激活能为196.27 kJ/mol;在变形温度较高或应变速率较低的合金中发生部分再结晶,并且在合金组织中存在大量的位错和亚晶;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,位错密度减小,合金的主要软化机制逐步由动态回复转变为动态再结晶.  相似文献   

5.
对GH4720Li合金在1080~1180℃、应变速率为0.1s~(-1)条件下的双道次压缩过程的热变形行为进行研究。结果表明:动态再结晶是GH4720Li合金的主要软化机制。在双道次压缩间歇期内,合金发生亚动态再结晶、静态再结晶和晶粒长大;低于1120℃的变形间歇期,亚动态再结晶、静态再结晶和晶粒长大的速度缓慢;1120℃及以上温度的变形间歇期,亚动态再结晶、静态再结晶和晶粒长大的速度加快。随变形温度升高和第一道次变形量增大,道次间歇期的亚动态再结晶和静态再结晶速度加快。γ′相在热变形过程中发生协调变形,并发生细化。  相似文献   

6.
在Gleeble-3500热模拟试验机上对工业纯钛TA1进行单、双道次等温热压缩试验,变形温度为650~850 ℃,道次间隙时间为1~60 s,变形速率为10 s-1,研究了工业纯钛TA1单、双道次热压缩过程中静态软化和动态软化行为。利用光学显微镜对变形后的微观组织进行观察,研究了工业纯钛TA1在不同变形条件下的微观组织演变。结果表明,工业纯钛TA1在单、双道次热压缩变形过程中表现出明显的硬化和软化行为,峰值应力前表现为加工硬化,峰值应力后表现为加工软化,最终达到动态软化和加工硬化的动态平衡。在道次间隙时间内发生静态软化,静态软化程度随着道次间隙时间的增加和温度的升高而增大。随着道次间隙时间的延长和温度的升高,道次间再结晶更加充分,第二道次变形后晶粒尺寸增加更明显,当发生完全再结晶时,软化程度达到最大。在热压缩变形期间,发生动态软化,650 ℃和750 ℃时以动态再结晶为主,850 ℃时以动态回复为主。  相似文献   

7.
道次间隔时间对7075铝合金热压缩变形组织和性能的影响   总被引:3,自引:2,他引:1  
在Gleeble-1500热模拟试验机上,采用高温等温压缩试验,研究了7075铝合金两道次热压缩变形道次间隔时间在合金组织和性能的影响,结果表明,在热压缩变形道次间保温停歇之的后,流变应力出现明显的软化现象,保温停歇时间越长,合金软化率越高,变形及停歇保持温度越高,合金软化越严重。回复和折出相的聚集粗化是造成合金软化的主要原因。  相似文献   

8.
采用Gleeble-3500热力模拟试验机在变形温度300~450℃、应变速率0.001~1 s-1条件下进行单轴压缩试验,研究ZX115(Mg-1.0%Zn-1.5%Ca(质量分数))合金热压缩过程中的组织演变及再结晶形核机制。结果表明:ZX115合金在热压缩过程中发生了明显的动态再结晶,再结晶晶粒尺寸随着变形温度的升高或应变速率的降低而增大。合金在不同变形条件下的动态再结晶机制有所差异,主要有孪生动态再结晶、不连续动态再结晶和第二相粒子促进动态再结晶等方式。  相似文献   

9.
对TA15钛合金进行了双道次热压缩实验,研究了该合金在变形温度910、940和970℃,应变速率0.01、0.1和1 s1及道次间隙保温时间600、1000、1400、1800和2200 s等不同变形参数下的软化行为,定量计算了相应的等轴0晶粒尺寸及其含量.结果 表明:TA15钛合金在双道次热压缩过程中,较高的变形温度和较小的应变速率会促使变形过程中的流动应力减小;在道次间隙保温过程中,材料呈现出了静态软化现象,其静态软化率随着变形温度的升高、应变速率的增大及道次间隙保温时间的延长而增加,且受应变速率的影响程度最大;此外,从合金的微观组织中观察到等轴d相晶粒在道次间隙保温过程中得到了明显的细化,且细化程度与其静态软化呈正相关性.  相似文献   

10.
在Gleeble-1500热模拟试验机上,采用高温等温压缩试验,研究了7075铝合金两道次热压缩变形道次间的软化规律。结果表明,在热压缩变形道次间保温停歇之后,流变应力出现明显的软化现象,保温停歇时间越长,合金软化率越高;变形及停歇保持温度越高,合金软化越严重。  相似文献   

11.
采用Gleeble-1500热模拟机研究6016铝合金单道次高温压缩变形时的显微组织演变。采用光学显微镜和透射电子显微镜分析合金在不同变形条件下的组织形貌特征。结果表明:在高温压缩变形时,该合金的变形激活能为270.257kJ/mol,硬化指数为8.5254;流变应力双曲正弦的自然对数值与温度补偿Zener-Hollomon参数自然对数值成线性关系;合金低温、低应变速率时的主要变形组织为动态回复组织,而高温变形时产生局部动态再结晶组织;该铝合金高温变形时的主要软化机制为动态回复,只有在高温、高应变速率下发生部分的动态再结晶;合金平均亚晶粒尺寸随温度补偿应变速率Zener-Hollomon参数的升高而减小。  相似文献   

12.
7150铝合金高温热压缩变形流变应力行为   总被引:7,自引:2,他引:5  
在Gleeble-1500热模拟机上对7150铝合金进行高温热压缩实验,研究该合金在变形温度为300~450 ℃和应变速率为0.01~10 s~(-1) 条件下的流变应力行为.结果表明:流变应力在变形初期随着应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述合金的热流变行为,其变形激活能为226.698 8 kJ/mol;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,再结晶晶粒在晶界交叉处出现并且晶粒数量逐渐增加;合金热压缩变形的主要软化机制由动态回复逐步转变为动态再结晶.  相似文献   

13.
1 INTRODUCTIONThewroughtmagnesiumalloyshaveexcellentspecificstrengthandstiffness ,machinability ,dampcapacity ,dimensionalstability ,lowmeltingcostsandare ,hence ,veryattractiveinsuchapplicationsasau tomobile ,aviation ,electronicandcommunicationin dustry[16 ] .Investigationsontheflowstressandsofteningbehaviorofmagnesiumalloysathigherformingtem peratureandstrainratehavebeenanimportantsub jectinwroughtmagnesiumalloysforming[710 ] .InthispapertheflowstressandsofteningbehaviorofAZ31Bdeform…  相似文献   

14.
在Gleeble-1500热模拟机上对室温120°模具等径弯曲通道变形(ECAP)制备的平均晶粒尺寸为200nm的工业纯钛(CP-Ti)进行等温变速压缩实验,研究超细晶(UFG)工业纯钛在变形温度为298~673K和应变速率为10-3~100s-1条件下的流变行为。利用透射电子显微镜分析超细晶工业纯钛在不同变形条件下的组织演化规律。结果表明:流变应力在变形初期随应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随温度的升高而减小,随应变速率的增大而增大;随变形温度的升高和应变速率的降低,应变速率敏感性指数m增加,晶粒粗化,亚晶尺寸增大,再结晶晶粒数量逐渐增加;超细晶工业纯钛热压缩变形的主要软化机制随变形温度的升高和应变速率的降低由动态回复逐步转变为动态再结晶。  相似文献   

15.
研究AZ31镁合金挤压板材在473~523K的温度范围内。应变速率0.001~1.0s-1压缩时的流变应力行为,计算板材沿挤压方向压缩时的激活能,并结合光学显微镜和透射电子显微镜探讨合金软化机制和变形机理之间的联系。结果表明,在中温下沿挤压方向压缩时,AZ31挤压态镁合金的变形激活能为174.18kJ/mol。这说明,由热激活位错交滑移所控制的动态再结晶是合金中温变形的主要软化机制。位错滑移是中温变形的主要变形机理,而孪生的作用则不大。其主要的动态再结晶机制为持续动态再结晶,并伴随少量的孪生动态再结晶。  相似文献   

16.
17.
采用控温模具在万能材料试验机上对柱状晶CuAlBe合金进行了等温压缩变形试验,以研究其在不同变形温度、变形速率、变形量下发生动态再结晶的行为.结果表明,在变形速率为5 mm/min时,再结晶温度随变形量的增加而降低.变形速率提高到10 mm/min和20 mm/min时,再结晶温度不再随变形量的增加而变化,保持在550℃.而当变形速率提高到40 mm/min、变形量为35%时再结晶温度提高到600℃;随变形量的增加,再结晶温度逐渐降低到550℃.变形温度低于450℃时,晶界发生开裂.  相似文献   

18.
The hot deformation behavior of an ultra-pure 17%Cr ferritic stainless steel was studied in the temperature range of 750–1000 °C and strain rates of 0.5 to 10 s?1 using isothermal hot compression tests in a thermomechanical simulator. The microstructural evolution was investigated using electron backscattered diffraction and transmission electron microscopy. A modified constitutive equation considering the effect of strain on material constant was developed, which predicted the flow stress for the deformation conditions studied, except at 950 °C in 1 s?1 and 900 °C in 10 s?1. Decreasing deformation temperature and increasing strain was beneficial in refining the microstructure. Decreasing deformation temperature, the in-grain shear bands appeared in the microstructure. It is suggested that the dynamic softening mechanism is closely related to deformation temperature. At low deformation temperature, dynamic recovery was major softening mechanism and no dynamic recrystallization occurred. At high deformation temperature, dynamic softening was explained in terms of efficient dynamic recovery and limited continuous dynamic recrystallization. A drop in the flow stress was not found due to very small fraction of new grains nucleated during dynamic recrystallization.  相似文献   

19.
The flow behavior of Al-Zn-Mg-Sc-Zr alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermo-mechanical equipment. Compression tests were performed in the temperature range of 340-500 °C and in the strain rate range of 0.001-10 s?1.The results indicate that the flow stress of the alloy increases with increasing strain rate at a given temperature, and decreases with increasing temperature at a given imposed strain rate. The relationship between flow stress and strain rate and temperature was derived by analyzing the experimental data. The constitutive equation of Al-Zn-Mg-Sc-Zr alloy during hot compression deformation can be described by the Arrhenius relationship of the hyperbolic sine form. The values of A, n, and α in the analytical expression of strain rate are fitted to be 1.49 × 1010 s?1, 7.504, and 0.0114 MPa?1, respectively. The hot deformation activation energy of the alloy during compression is 150.25 kJ/mol. The temperature and strain rate have great influences on microstructure evolution of Al-Zn-Mg-Sc-Zr alloy during hot compression deformation. According to microstructure evolution, the dynamic flow softening is mainly caused by dynamic recovery and dynamic recrystallization in this present experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号