首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
以中碳低合金钢为研究对象,采用直接淬火配分(DQP)工艺,研究一步配分时间对组织演变和显微硬度的影响规律。结果表明:DQP钢的组织由马氏体和残留奥氏体构成。在配分阶段形成了等温马氏体并析出ε碳化物,等温马氏体主要在等温配分前期形成,而碳化物主要在等温配分后期析出。钢中残留奥氏体呈膜状分布在马氏体板条间,随等温配分时间增加,残留奥氏体含量增加,最高可达8%。短时等温配分处理DQP钢的硬度最高,随配分时间增加,硬度明显降低,保持在482~486 HV区间,这是多种机制共同作用的结果。  相似文献   

2.
采用热轧后间断淬火+回火(IDQ+T)和在线配分(DQP)两种不同的工艺对Si-Mn-Cr-Ni-Mo系中碳低合金钢进行处理,利用SEM、XRD、EBSD研究冷却工艺对微观组织和力学性能的影响。结果表明:两种工艺下均得到板条马氏体和残留奥氏体的组织。经过轧后间断淬火+回火(IDQ+T),随淬火终冷温度升高,马氏体板条粗化,碳化物尺寸增加,残留奥氏体含量增加,强度降低,伸长率升高,韧性先升高后降低。组织中的粗大马氏体板条和尺寸较大的碳化物会降低韧性。在线配分(DQP)工艺得到的残留奥氏体含量最高,分布也更均匀,因此其伸长率和冲击功均明显增加,但残留奥氏体量增加同时会降低钢的强度,对屈服强度的影响最明显,导致屈强比降低。DQP处理实验钢的综合力学更优,抗拉强度超过1500 MPa、屈服强度超过1000 MPa,伸长率大于16%,-20℃冲击功达到26.8 J。  相似文献   

3.
以含碳量为0.078%的Si-Mn钢为研究对象,采用直接淬火-动态配分(DQP)工艺,研究了不同淬火温度对显微组织和宏观硬度的影响。结果表明,经DQP工艺处理后的低碳钢,组织以铁素体、马氏体/贝氏体为主,残留奥氏体的含量在4.3%~7.2%之间,当淬火温度为320℃时,达到最大值7.2%。通过透射电镜观察发现,残留奥氏体主要以块状的形式分布于铁素体/马氏体和铁素体/贝氏体的界面,少量尺寸较小的残留奥氏体以薄膜状的形态分布于马氏体/贝氏体板条间。不同淬火温度下,硬度值在253~264 HV10之间,随淬火温度变化幅度较小,并且在240℃和320℃时达到最大值264 HV10。该研究表明,采用轧制变形和元素配分的方式能极大限度地稳定残留奥氏体,使得含碳量为0.078%的低碳钢能获得高达7.2%的残留奥氏体,为合金元素减量化的QP钢生产提供了新方法。  相似文献   

4.
对0.26C-1.72Si-1.56Mn钢进行了不同碳配分时间的淬火-配分(Q-P)处理,并研究了其组织,特别是二次淬火中奥氏体的分解转变。结果表明:Q-P处理后都形成了板条马氏体+二次淬火组织,且二次淬火组织中都存在孪晶马氏体;碳配分时间在10~300 s范围内,Q-P处理后残留奥氏体中的C含量均高于1.0wt%,残留奥氏体的含量不低于11%(体积分数),有利于钢韧性的改善;初次淬火后未转变奥氏体的形态和尺寸是影响其稳定性的关键因素,初次马氏体板条界膜状奥氏体容易形成残留奥氏体;相对于块状未转变奥氏体,条状未转变奥氏体容易形成二次淬火马氏体及片状残留奥氏体。  相似文献   

5.
对热轧态Fe-Mn-Si-B系汽车用高强钢进行了热成形-淬火碳分配处理,研究了淬火温度和等温碳分配温度及时间对高强钢物相组成、组织与力学性能的影响。结果表明,热挤压成形后快淬至室温的试样中形成了马氏体组织,而淬火-碳分配工艺下都形成了细小的马氏体和残留奥氏体双相组织;不同热成形-淬火碳分配工艺下高强钢的强塑积都明显高于热成形后直接淬火至室温的试样,采用325℃×45 s淬火-碳分配后高强钢具有最高的强塑积(22 663 MPa·%),继续延长碳分配时间至60 s,高强钢的强塑积反而降低,这主要是由于韧性残留奥氏体发生部分分解而形成了下贝氏体组织。  相似文献   

6.
低碳Si-Mn系Q&P钢两相区的退火热处理工艺   总被引:1,自引:0,他引:1  
研究一种新型的两相区不同退火温度的淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构的影响,并和奥氏体区退火的Q&P热处理工艺进行对比。通过SEM、TEM分析发现,采用两相区退火的Q&P工艺室温组织为板条马氏体、铁素体和薄膜状残留奥氏体。残留奥氏体以两种形态存在:处于马氏体板条间的薄膜状和位于原奥氏体晶界处的块状。两相区热处理后的Q&P钢,不仅抗拉强度高达1000 MPa以上,其伸长率也高达23%以上,体积分数高达11%的残留奥氏体在组织中起到了相变诱发塑性的作用。  相似文献   

7.
为满足汽车轻量化的发展要求, 先进高强度钢已成为研究热点, 近年来以淬火-分配(Q&P)理念为基础的工艺研究备受关注。本文将Q&P理念引入热轧工艺过程中, 并进行了实验研究, 即采用直接淬火(DQ)工艺结合非等温条件下碳分配处理(碳分配过程在模拟卷取过程中进行)。实验结果表明: 实验钢组织由马氏体、残余奥氏体及少量铁素体组成。当卷取温度为350 ℃时, 实验钢组织中残余奥氏体体积分数较高, 达到11.5%, 同时抗拉强度达到1 370 MPa, 伸长率为14.20%, 强塑积为19.5 GPa·%。进行TEM观察, 发现马氏体板条束之间存在以薄膜状形态分布的残余奥氏体。  相似文献   

8.
利用扫描电镜、X射线衍射仪、冲击试验机、洛氏硬度计和拉伸试验机等,对淬火-配分(Q-P)工艺等温淬火温度对60Mn2SiCr钢微观组织及力学性能的影响进行了研究,并重点分析了试验钢经Q-P处理后微观组织中残留奥氏体含量及残留奥氏体中碳含量与力学性能的关系。结果表明,等温淬火温度从120℃升高至180℃,试样洛氏硬度、冲击吸收能量、抗拉强度以及伸长率均随着马氏体、残留奥氏体及残留奥氏体中碳含量下降而降低。当Q-P工艺等温淬火温度为120℃时,力学性能最优,试样中残留奥氏体体积分数为13.9%,残留奥氏体中碳含量(质量分数)为1.1%,洛氏硬度为58.8 HRC,冲击吸收能量为50.7 J,抗拉强度为1768 MPa,伸长率达19.6%。  相似文献   

9.
为了改善超高强钢的塑韧性,采用轧后直接淬火到马氏体区等温配分的工艺,研究配分时间对中碳低合金超高强钢组织和力学性能的影响规律。结果表明:在260℃等温配分处理,钢的组织包括初生马氏体、新生马氏体和残留奥氏体,在等温过程中还有碳化物析出和等温马氏体形成。在等温配分过程中,碳由马氏体向奥氏体扩散处于主导地位,残留奥氏体含量不断增加,新生马氏体量减少,塑性和韧性提高。等温配分后期,由于碳化物不断析出消耗碳原子,导致扩散到奥氏体中的碳原子减少,残留奥氏体体积分数增加缓慢。析出相粒子在等温过程中没有明显长大,起到了抵抗马氏体软化的作用。等温60 min具有良好的强度和塑韧性能,抗拉强度1546 MPa、伸长率为15.3%,-20℃冲击功为27.5 J。  相似文献   

10.
采用SEM、TEM、XRD、室温拉伸等手段,研究了0.1C-7.2Mn钢两相区温轧淬火配分处理钢的组织形貌、碳化物析出、残留奥氏体体积分数及其中的C含量及力学性能。结果表明,随着温轧压下率的增大,两相区温轧淬火配分处理后试样的马氏体板条得到细化并逐渐平行于轧制方向;两相区温轧淬火配分处理后试样的显微组织由马氏体和残留奥氏体组成,并且有碳化物析出;随着温轧压下率的增大,碳化物的平均尺寸粗化,残留奥氏体的体积分数逐渐升高,并且残留奥氏体中的C含量先升高后降低,屈服强度和抗拉强度均先升高后降低,伸长率先降低后升高。当温轧压下率为80%时,强塑积达到最高31.50 GPa·%。  相似文献   

11.
研究了热处理工艺对M2高速钢组织和性能的影响。结果表明:M2高速钢淬火后的组织为淬火马氏体+残留奥氏体+大量碳化物;随着淬火温度的升高,M2钢淬火后残留奥氏体含量(质量分数)升高,经3次回火后残留奥氏体基本上完全消除,增加冷处理后残留奥氏体的含量相对于3次回火的要多,钢的强度和韧性得到改善。对比M2高速钢在不同热处理工艺条件下的组织和性能,最佳热处理工艺为850 ℃×30 min预热+1160 ℃×30 min淬火+(-65 ℃×1 h)冷处理+560 ℃×2 h回火3次。  相似文献   

12.
利用光学显微镜、拉伸试验机、扫描电镜、XRD和EBSD等手段对22MnB5钢的微观组织及力学性能进行了表征,并重点分析了一步法Q&P工艺处理后的22MnB5钢中残留奥氏体含量及残留奥氏体中碳含量与力学性能的关系。结果表明:采用一步法Q&P工艺,可以获得抗拉强度超过1400 MPa,伸长率超过15%的超高强度22MnB5钢板。随着淬火温度从240 ℃升高至300 ℃,22MnB5钢的组织由马氏体转变为马氏体+残留奥氏体复相组织,试样中的残留奥氏体含量逐渐增加。相同配分温度延长配分时间,残留奥氏体含量呈现先增加后降低趋势。不同热处理工艺下残留奥氏体中的平均碳含量为1.49wt%。采用一步法Q&P热处理工艺可以使残留奥氏体中富集碳,提高残留奥氏体稳定性,强塑积可以达到22.14 GPa·%。  相似文献   

13.
分析了淬火配分处理对锻态Fe-0.2C-9Mn-3.5Al钢显微组织及力学行为的影响。结果表明,热处理态试验钢主要由块状δ-铁素体、马氏体和板条状残留奥氏体等多相构成;残留奥氏体的体积分数随等温淬火温度升高而增大,在310 ℃时达到峰值;310 ℃等温淬火后在400 ℃配分3 min时可以获得较优的综合力学性能,抗拉强度和断后伸长率分别为1175 MPa和21.50%,强塑积达到25.26 GPa·%;应力-应变曲线中存在着明显的“锯齿”状起伏,可能与亚稳态的残留奥氏体集中转变为马氏体有关。  相似文献   

14.
The microstructures and mechanical properties of a high-Si (1.5 wt.%) steel produced by a novel process of quenching and partitioning (Q & P) were compared with those obtained using traditional heat treatments (i.e. austempering, intercritical annealing for dual phase, quench and tempering). Plate steel was included for exploration of the Q & P process in applications requiring strength and toughness (such as an API line pipe), where retained austenite may contribute to the overall toughness via the TRIP phenomenon at a crack top. The Q & P process is based on the partial transformation of austenite to martensite, followed by partitioning of carbon from martensite into austenite, which leads to an untypical microstructure. Retained austenite amounts up to 6 vol.% with a carbon content of up to 0.88 wt.% were achieved in 0.1% carbon steel using Q & P. Superior impact toughness at higher yield strength levels was found after Q & P compared to other traditional heat treatments with equivalent partitioning, austempering or tempering conditions.  相似文献   

15.
探究了热处理工艺对多元低、中碳中合金耐磨铸钢组织和性能的影响,特别分析了它们的强韧化机理.结果表明,低碳合金钢经945℃淬火、280℃回火后硬度值为49 HRC以上,韧性值超过224 J/cm2;中碳合金钢经945℃淬火、370℃回火后硬度值达48.6 HRC,韧性值90J/cm2左右.两种材料具有较好的回火稳定性,基体组织主要是板条状马氏体,马氏体板条间少量薄膜状的残余奥氏体,以及界面上弥散的碳化物起到强韧化作用,材料综合性能表现良好.  相似文献   

16.
采用SEM、XRD、TEM和Thermo-Calc软件计算等手段研究了两相区回火温度对0.02C-7Mn钢的组织和性能变化的影响。结果表明,淬火后试验钢组织以淬火马氏体为主,伴有极少量的残留奥氏体;两相区回火后,基体组织以回火马氏体为主,出现逆转变奥氏体,空冷后转变为残留奥氏体。随着回火温度的升高,残留奥氏体的含量逐渐增加,在650 ℃回火后到达峰值为18.78%;与此同时出现了6.57%的ε-马氏体。两相区回火后,试验钢的抗拉强度均有下降,但是屈服强度有不同程度的升高,这归因于回火过程中位错密度的下降以及弥散第二相的析出。另外,ε-马氏体的存在不仅迅速降低了屈服强度,而且还损害了韧性。在600 ℃回火后,试验钢具有优异的综合力学性能(横向:抗拉强度为984 MPa、屈服强度为973 MPa,-40 ℃冲击吸收能量为163 J,纵向:抗拉强度为947 MPa、屈服强度为919 MPa,-40 ℃冲击吸收能量为186 J),满足Q690用钢的力学性能需求。  相似文献   

17.
研究了不同Q&P工艺参数对0.3C-1.35Mn-1.30Si钢力学性能的影响。结果表明:淬火温度主要影响马氏体的含量;配分温度与配分时间影响碳配分的程度,最终影响残留奥氏体的含量。微观组织的含量影响力学性能。伸长率的变化趋势与残留奥氏体量的变化趋势基本一致,Q&P钢的塑性主要与残留奥氏体的含量有关,残留奥氏体中的含碳量为1.2%~1.3%。  相似文献   

18.
热处理工艺对300M超高强度钢组织和性能的影响   总被引:1,自引:0,他引:1  
采用SEM、TEM等方法研究了不同回火温度对300M超高强度钢的显微组织和力学性能的影响。结果表明,300M钢经870℃淬火后,在290~320℃范围内回火,显微组织为板条马氏体、下贝氏体和残留奥氏体组成。随着回火温度的升高,板条马氏体宽度由260 nm增加到437 nm,位错密度减小,下贝氏体含量增多;合金的抗拉强度有所下降,韧性呈上升趋势,而屈服强度、伸长率和断面收缩率变化较小。当回火温度为300℃时,强度、塑性和韧性达到一个最佳匹配,合金具有最优的综合力学性能。  相似文献   

19.
淬火-碳分配-回火(Q-P-T)工艺浅介   总被引:7,自引:1,他引:6  
传统淬火-回火工艺不能满足高强度钢兼具一定韧性和廉价的要求,Speer等为在淬火钢内稳定一定量的残留奥氏体,提出淬火-碳分配(Q-P)工艺,即淬火后在一定温度保温一定时间,碳自马氏体分配至残留奥氏体、因富碳而稳定化,以保证淬火高强度钢的塑性和韧性.在O-P工艺基础上,本文作者于2007年建议一个热处理的新工艺:淬火-碳分配-回火(Q-P-T)工艺,即淬火至Ms~Mf后,除作碳分配外,还在一定温度回火一定时间,使析出复杂碳化物,以增加强化作用.Q-P-T钢含<0.5wt%C以防止脆性,含1.5wt%Si阻碍渗碳体的析出,促进碳分配,(1.0~1.5)wt%合金元素Mn(Ni)以降低Ms温度,以及少量复杂碳化物形成元素Nb和Mo.含0.48wt%C的Q-P-T钢经Q-P-T处理后显示抗拉强度为2 160 MPa,总伸长率11%;含0.2wt%C的Q-P-T钢具抗拉强度1 150 MPa,总伸长率17%;含0.1wt%C的Q-P-T钢具有抗拉强度900 MPa和较高韧性.初步设想了Q-P-T工艺的热力学和动力学,有必要作进一步研究使Q-P-T钢的成分和性能进一步优化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号