首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the problem of opportunistic fair scheduling (OFS) of multiple users in downlink time-division multiple-access (TDMA) systems employing multiple transmit antennas and beamforming. OFS is an important technique in wireless networks to achieve fair bandwidth usage among users, which is performed on a per-frame basis at the media access control layer. Multiple-transmit-antenna beamforming provides TDMA systems with the capability of supporting multiple concurrent transmissions, i.e., multiple spatial channels at the physical layer. Given a particular subset of users and their channel conditions, the optimal beamforming scheme can be calculated. The multiuser opportunistic scheduling problem then refers to the selection of the optimal subset of users for transmission at each time instant to maximize the total throughput of the system subject to a certain fairness constraint on each individual user's throughput. We propose discrete stochastic approximation algorithms to adaptively select a better subset of users. We also consider scenarios of time-varying channels for which the scheduling algorithm can track the time-varying optimal user subset. We present simulation results to demonstrate the performance of the proposed scheduling algorithms in terms of both throughput and fairness, their fast convergence, and the excellent tracking capability in time-varying environments.  相似文献   

2.
Efficient resource management is a major challenge in the operation of wireless systems, especially energy-constrained ad hoc networks. In this paper, we propose a cross-layer optimization framework to jointly design the scheduling and power control in wireless ad hoc networks. We study the system performance by combining scheduling, power control, and adaptive modulation. Specifically, the transmitted power and constellation size are dynamically adapted based on the packet arrival, quality of service (QoS) requirements, power limits, and channel conditions. A key feature of the proposed method is that it facilitates a distributed implementation, which is desirable in wireless ad hoc networks. The performance of our proposed methodology will be investigated in ad hoc networks supporting unicast as well as multicast traffic. Simulation results will show that the proposed scheme achieves significant gains in both the single-hop throughput and power efficiency compared with the existing method, which implements the scheduling through a central controller, and adopts power control with fixed modulation  相似文献   

3.
Algorithms for scheduling TDMA transmissions in multi-hop networks usually determine the smallest length conflict-free assignment of slots in which each link or node is activated at least once. This is based on the assumption that there are many independent point-to-point flows in the network. In sensor networks however often data are transferred from the sensor nodes to a few central data collectors. The scheduling problem is therefore to determine the smallest length conflict-free assignment of slots during which the packets generated at each node reach their destination. The conflicting node transmissions are determined based on an interference graph, which may be different from connectivity graph due to the broadcast nature of wireless transmissions. We show that this problem is NP-complete. We first propose two centralized heuristic algorithms: one based on direct scheduling of the nodes or node-based scheduling, which is adapted from classical multi-hop scheduling algorithms for general ad hoc networks, and the other based on scheduling the levels in the routing tree before scheduling the nodes or level-based scheduling, which is a novel scheduling algorithm for many-to-one communication in sensor networks. The performance of these algorithms depends on the distribution of the nodes across the levels. We then propose a distributed algorithm based on the distributed coloring of the nodes, that increases the delay by a factor of 10–70 over centralized algorithms for 1000 nodes. We also obtain upper bound for these schedules as a function of the total number of packets generated in the network.  相似文献   

4.
Capacity regions for wireless ad hoc networks   总被引:6,自引:0,他引:6  
We define and study capacity regions for wireless ad hoc networks with an arbitrary number of nodes and topology. These regions describe the set of achievable rate combinations between all source-destination pairs in the network under various transmission strategies, such as variable-rate transmission, single-hop or multihop routing, power control, and successive interference cancellation (SIC). Multihop cellular networks and networks with energy constraints are studied as special cases. With slight modifications, the developed formulation can handle node mobility and time-varying flat-fading channels. Numerical results indicate that multihop routing, the ability for concurrent transmissions, and SIC significantly increase the capacity of ad hoc and multihop cellular networks. On the other hand, gains from power control are significant only when variable-rate transmission is not used. Also, time-varying flat-fading and node mobility actually improve the capacity. Finally, multihop routing greatly improves the performance of energy-constraint networks.  相似文献   

5.
史琰  郁威威 《电子学报》2018,46(2):507-512
为了解决无线Ad hoc网络在负载较重时网络性能差等问题,提出了一种将TDMA(Time Division Media Access)与CCFD(Co-time Co-frequency Full Duplex)相结合的分布式全双工MAC(Media Access Control)协议.数据传输前节点首先在链路共存准则的基础上进行抑制检查,随后主链路按一定的优先级筛选二级链路并发起调度请求,调度所需的四次握手过程在业务时隙头部完成.本协议在不影响传统TDMA半双工通信的条件下,增加同一时隙中可以共存的链路数,改善网络的吞吐量和时延性能.  相似文献   

6.
Upper bounds on the service carrying capacity of a multi-hop, wireless, SSMA-based ad hoc network are considered herein. The network has a single radio band for transmission and reception. Each node can transmit to, or receive from, multiple nodes simultaneously. We formulate the scheduling of transmissions and control of transmit powers as a joint, mixed-integer, nonlinear optimization problem that yields maximum return at minimum power subject to SINR constraints. We present an efficient tabu search-based heuristic algorithm to solve the optimization problem and rigorously assess the quality of the results. Through analysis and simulation, we establish upper bounds on the VoIP call carrying capacity of the network as function of various parameters. We discuss the pros and cons of using SSMA as a spectrum sharing technique in wireless ad hoc networks.  相似文献   

7.
针对分簇的水声传感网,提出了一种基于时分多址(TDMA)的MAC层协议——Cluster-TDMA。该协议主要由规划阶段和传输阶段组成。规划阶段,首先由网关节点规划能造成簇间干扰的子节点的传输,其次由各簇头节点分别规划本簇内其他子节点的传输;传输阶段,子节点根据规划表周期性地向簇头节点发送数据,这些数据最终汇聚到网关节点。该协议简单有效地解决了引起簇间干扰子结点的传输规划问题。C++仿真实验表明,该协议具有良好的吞吐率和能量效率性能。  相似文献   

8.
The time slotted system with rate regulation, which adapts the transmission rate to the interference for each time slot, is proposed to enhance the throughput while meeting the SINR requirement for cochannel interference limited wireless ad hoc networks. We show that the throughput of the rate regulated TDMA system is larger than that of the rate regulated TDMA/CDMA system. Furthermore, we also propose a scheduling algorithm to maximize the total throughput of the rate regulated TDMA system.  相似文献   

9.
Self-coordinating localized fair queueing in wireless ad hoc networks   总被引:2,自引:0,他引:2  
Distributed fair queueing in a multihop, wireless ad hoc network is challenging for several reasons. First, the wireless channel is shared among multiple contending nodes in a spatial locality. Location-dependent channel contention complicates the fairness notion. Second, the sender of a flow does not have explicit information regarding the contending flows originated from other nodes. Fair queueing over ad hoc networks is a distributed scheduling problem by nature. Finally, the wireless channel capacity is a scarce resource. Spatial channel reuse, i.e., simultaneous transmissions of flows that do not interfere with each other, should be encouraged whenever possible. In this paper, we reexamine the fairness notion in an ad hoc network using a graph-theoretic formulation and extract the fairness requirements that an ad hoc fair queueing algorithm should possess. To meet these requirements, we propose maximize-local-minimum fair queueing (MLM-FQ), a novel distributed packet scheduling algorithm where local schedulers self-coordinate their scheduling decisions and collectively achieve fair bandwidth sharing. We then propose enhanced MLM-FQ (EMLM-FQ) to further improve the spatial channel reuse and limit the impact of inaccurate scheduling information resulted from collisions. EMLM-FQ achieves statistical short-term throughput and delay bounds over the shared wireless channel. Analysis and extensive simulations confirm the effectiveness and efficiency of our self-coordinating localized design in providing global fair channel access in wireless ad hoc networks.  相似文献   

10.
In this paper, the effect of transmission power on the throughput capacity of finite ad hoc wireless networks, considering a scheduling-based medium access control (MAC) protocol such as time division multiple access (TDMA) and an interference model that is based on the received signal-to-interference-plus-noise ratio (SINR) levels, is analyzed and investigated. The authors prove that independent of nodal distribution and traffic pattern, the capacity of an ad hoc wireless network is maximized by properly increasing the nodal transmission power. Under the special case of their analysis that the maximum transmission power can be arbitrarily large, the authors prove that the fully connected topology (i.e., the topology under which every node can directly communicate with every other node in the network) is always an optimum topology, independent of nodal distribution and traffic pattern. The present result stands in sharp contrast with previous results that appeared in the literature for networks with random nodal distribution and traffic pattern, which suggest that the use of minimal common transmission power that maintains connectivity in the network maximizes the throughput capacity. A linear programming (LP) formulation for obtaining the exact solution to the optimization problem, which yields the throughput capacity of finite ad hoc wireless networks given a nodal transmit power vector, is also derived. The authors' LP-based performance evaluation results confirm the distinct capacity improvement that can be attained under their recommended approach, as well as identify the magnitude of capacity upgrade that can be realized for networks with random and uniform topologies and traffic patterns.  相似文献   

11.
Cognitive radios (CRs) are emerging as a promising technology to enhance spectrum utilization through opportunistic on-demand access. Many MAC protocols for cognitive radio networks (CRNs) have been designed assuming multiple transceivers per CR user. However, in practice, such an assumption comes at the cost of extra hardware. In this paper, we address the problem of assigning channels to CR transmissions in single-hop and multi-hop CRNs, assuming one transceiver per CR. The primary goal of our design is to maximize the number of feasible concurrent CR transmissions, and conserve energy as a secondary objective, with respect to both spectrum assignment and transmission power subject to interference constraint and user rate demands. The problem is formulated under both binary-level and multi-level spectrum opportunity frameworks. Our formulation applies to any power-rate relationship. For single-hop CRNs, a centralized polynomial-time algorithm based on bipartite matching that computes the optimal channel assignment is developed. We then integrate this algorithm into distributed MAC protocols that preserve fairness. For multi-hop ad hoc CRNs, we propose a novel distributed MAC protocol (WFC-MAC) that attempts to maximize the CRN throughput, assuming single transceiver radios but with “dual-receive” capability. WFC-MAC uses a cooperative assignment that relies only on information provided by the two communicating users. The main novelty in WFC-MAC lies in requiring no active coordination with licensed users and exploiting the dual-receive capability of radios, thus alleviating various channel access problems that are common to multi-channel designs. We conduct theoretical analysis of our MAC protocols, and study their performance via simulations. The results indicate that compared with CSMA/CA variants, our protocols significantly decrease the blocking rate of CR transmissions, and hence improve network throughput.  相似文献   

12.
Graph coloring, which is at the heart of several problems arising in wireless ad hoc networks, concerns the problem of assigning colors to the nodes of a graph such that adjacent nodes do not share the same color. This paper deals with the problem of generating valid colorings in a distributed way, while minimizing the number of colors used. Examples of related problems in wireless ad hoc networks are TDMA slot assignment, wakeup scheduling, and data collection. The presented algorithm is inspired by the desynchronization observed in the context of the calling behaviour of male Japanese tree frogs. Experimental results indicate that the proposed algorithm is very competitive with current state-of-the-art approaches.  相似文献   

13.
In this article we investigate the trade-offs and the constraints for multimedia over mobile ad hoc CDMA networks, and propose a cross-layer distributed power control and scheduling protocol to resolve those trade-offs and constraints in order to provide high-quality video over wireless ad hoc CDMA networks. In particular, a distributed power control and scheduling protocol is proposed to control the incurred delay of video streaming over multihop wireless ad hoc networks, as well as the multiple access interference (MAI). We also investigate the impacts of Doppler spread and noisy channel estimates upon the end-to-end video quality, and provide a relatively robust system which employs a combination of power control and coding/interleaving to combat the effects of Doppler spread by exploiting the increased time diversity when the Doppler spread becomes large. Thus, more robust end-to-end video quality can be achieved over a wide range of channel conditions  相似文献   

14.
QoS-aware TDMA for end-to-end traffic scheduling in ad hoc networks   总被引:1,自引:0,他引:1  
The proliferation of low-cost broadband air interfaces has paved the way to the introduction of high-definition multimedia services in mobile and wireless networks. The cost for network resources utilization, when provisioning such services, will play a prominent role in their commercial success, since the more spare resources that can be used, the more cheaply the services can be delivered to the end users. In the context of promoting the role of ad hoc networks as service platforms for high quality multimedia applications, this article first discusses and classifies a set of issues involved in quality of service (QoS) provisioning in ad hoc networks and then presents a congestion-free TDMA algorithm for end-to-end network resources assignment via an optimized mechanism that relies on capacity requests and grants. The article also illustrates a method for invoking this algorithm to achieve efficient end-to-end QoS provisioning and concludes by showing the superiority of the proposed algorithm, as compared to other recently proposed TDMA scheduling algorithms  相似文献   

15.
Moving toward 4G, wireless ad hoc networks receive growing interest due to users' provisioning of mobility, usability of services, and seamless communications. In ad hoc networks fading environments provide the opportunity to exploit variations in channel conditions, and transmit to the user with the currently "best" channel. In this article two types of opportunistic transmission, which leverage time diversity and multi-user diversity, respectively, are studied. Considering the co-channel interference and lack of a central controller in ad hoc networks, the "cooperative and opportunistic transmission" concept is promoted. For opportunistic transmission that exploits time diversity, it is observed that the inequality in channel contention due to the hidden terminal phenomenon tends to result in energy inefficiency. Under this design philosophy, we propose a distributed cooperative rate adaptation (CRA) scheme to reduce overall system power consumption. Taking advantage of the time-varying channel among different users/receivers and being aware of the potential contention among neighboring transmissions, we propose a QoS-aware cooperative and opportunistic scheduling (COS) scheme to improve system performance while satisfying QoS requirements of individual flows. Simulation results show that by leveraging node cooperation, our proposed schemes, CRA and COS, achieve higher network throughput and provide better QoS support than existing work  相似文献   

16.
Distributed interference compensation for wireless networks   总被引:7,自引:0,他引:7  
We consider a distributed power control scheme for wireless ad hoc networks, in which each user announces a price that reflects compensation paid by other users for their interference. We present an asynchronous distributed algorithm for updating power levels and prices. By relating this algorithm to myopic best response updates in a fictitious game, we are able to characterize convergence using supermodular game theory. Extensions of this algorithm to a multichannel network are also presented, in which users can allocate their power across multiple frequency bands.  相似文献   

17.
Patrik  Peter  Di   《Ad hoc Networks》2004,2(4):405-418
An ad hoc network can be set up by a number of units without the need of any permanent infrastructure. Two units establish a communication link if the channel quality is sufficiently high. As not all pairs of units can establish direct links, traffic between two units may have to be relayed through other units. This is known as the multi-hop functionality. In military command and control systems, ad hoc networks are also referred to as multi-hop radio networks.

Spatial TDMA (STDMA) is a scheme for access control in ad hoc networks. STDMA improves TDMA by allowing simultaneous transmission of multiple units. In this paper, we study the optimization problem of STDMA scheduling, where the objective is to find minimum-length schedules. Previous work for this problem has focused on heuristics, whose performance is difficult to analyze when optimal solutions are not known. We develop novel mathematical programming formulations for this problem, and present a column generation solution method. Our numerical experiments show that the method generates a very tight bound to the optimal schedule length, and thereby enables optimal or near-optimal solutions. The column generation method can be used to provide benchmarks when evaluating STDMA scheduling algorithms. In particular, we use the bound obtained in the column generation method to evaluate a simple greedy algorithm that is suitable for distributed implementations.  相似文献   


18.
In wireless multihop networks, communication between two end-nodes is carried out by hopping over multiple wireless links. However, the fact that each node has to transmit not only its own traffic, but also traffic on behalf of other nodes, leads to unfairness among the communication rates of the nodes. Traditional Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) based media access control does not work satisfactory in a multihop scenario, since an intended target of a communication may be subject to mutual interference imposed by concurrent transmissions from nodes, which cannot directly sense each other, thus causing unfair throughput allocation. Although Time Division Multiple Access (TDMA) seems to be a more promising solution, careful transmission scheduling is needed in order to achieve error-free communication and fairness. Several algorithms may be found in the literature for scheduling TDMA transmissions in wireless multihop networks. Their main goal is to determine the optimal scheduling, in order to increase the capacity and reduce the delay for a given network topology, though they do not consider the traffic requirements of the active flows of the multihop network or fairness issues. In this paper, we propose a joint TDMA scheduling/load balancing algorithm, called Load-Balanced-Fair Flow Vector Scheduling Algorithm (LB-FFVSA). This algorithm schedules the transmissions in a fair manner, in terms of throughput per connection, taking into account the communication requirements of the active flows of the network. Simulation results show that the proposed algorithm achieves improved performance compared to other solutions, not only in terms of fairness, but also in terms of throughput. Moreover, it was proved that when a load balancing technique is used, the performance of the scheduling algorithm is further improved.  相似文献   

19.
A technical challenge in successful deployment and utilization of wireless multihop networks (WMN) are to make effective use of the limited channel bandwidth. One method to solve this challenge is broadcast scheduling of channel usage by the way of time division multiple access (TDMA). Three evolutionary algorithms, namely genetic algorithm (GA), immune genetic algorithm (IGA) and memetic algorithm (MA) are used in this study to solve broadcast scheduling for TDMA in WMN. The aim is to minimize the TDMA cycle length and maximize the node transmissions with reduced computation time. In comparison to GA and IGA, MA actively aim on improving the solutions and is explicitly concerned in exploiting all available knowledge about the problem. The simulation results on numerous problem instances confirm that MA significantly outperforms several heuristic and evolutionary algorithms by solving well-known benchmark problem in terms of solution quality, which also demonstrates the effectiveness of MA in efficient use of channel bandwidth.  相似文献   

20.
The mobile multimedia applications have recently generated much interest in wireless ad hoc networks with supporting the quality-of-service (QoS) communications. The QoS metric considered in this work is the reserved bandwidth, i.e., the time slot reservation. We approach this problem by assuming a common channel shared by all hosts under a TDMA (Time Division Multiple Access) channel model. In this paper, we propose a new TDMA-based QoS multicast routing protocol, namely hexagonal-tree QoS multicast protocol, for a wireless mobile ad hoc network. Existing QoS routing solutions have addressed this problem by assuming a stronger multi-antenna model or a less-strong CDMA-over-TDMA channel model. While more practical and less costly, using a TDMA model needs to face the challenge of radio interference problems. The simpler TDMA model offers the power-saving nature. In this paper, we propose a new multicast tree structure, namely a hexagonal-tree, to serve as the QoS multicasting tree, where the MAC sub-layer adopts the TDMA channel model. In this work, both the hidden-terminal and exposed-terminal problems are taken into consideration to possibly exploit the time-slot reuse capability. The hexagonal-based scheme offers a higher success rate for constructing the QoS multicast tree due to the use of the hexagonal-tree. A hexagonal-tree is a tree whose sub-path is a hexagonal-path. A hexagonal-path is a special two-path structure. This greatly improves the success rate by means of multi-path routing. Performance analysis results are discussed to demonstrate the achievement of efficient QoS multicasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号