首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
台阶式溢流坝水力特性初探   总被引:6,自引:1,他引:5  
本文结合嘉陵江东西关水电站枢纽右岸台阶式溢流坝坝型,对四种不同台阶型式坝面的流态、消能效果及台阶上时均压力分布进行了实验研究。其结果表明,台阶式溢流坝在一定的下泄流量范围内,由于台阶间形成强烈的横向漩滚.水流掺气.显著提高了坝面的消能效果,台阶上的时均负压值一般不大,但在较大的单宽流量下,由于坝回流速较大,仍易发生主化现象,故台阶式溢流坝适宜在单宽流量不大的情况下采用。  相似文献   

2.
文章结合河南省内乡县打磨岗灌区烟草水源工程雲露湖水库碾压混凝土大坝台阶式溢流坝面设计,采用两种计算方法,对三种不同台阶尺寸的坝面消能效果进行了水力计算。其结果表明,台阶式溢流坝在一定的下泄流量范围内,由于台阶间形成强烈的横向漩滚、水流掺气,显著提高了坝面的消能效果,但随着泄量的增大,消能率逐渐降低,也即小流量情况下消能效果好,大流量情况下消能效果差,故台阶式溢流坝适宜在单宽流量不大的情况下采用。  相似文献   

3.
根据大尺度的试验设备所进行的实验研究,证实了台阶式溢洪道过渡流态的存在。  相似文献   

4.
东西关水电站右岸溢流坝选用台阶式溢流坝,根据对溢流坝断面模型进行的流态、消能效果与台阶上时均压力分布的试验研究表明,该坝面采用台阶式是可行的,在一定流量范围内,由于水流自掺气的形成,显著提高了溢流坝面的消能效果,台阶上的时均负压一般不大,在合理的运行条件下,坝面不会发生空蚀破坏,台阶上也可不设通气设施。  相似文献   

5.
白虎潭水库溢流坝堰面采用WES堰型,通过整体模型试验,建议将光滑的堰面改为采用台阶形式的堰面.由于溢流坝为自由溢流式泄洪方式,没有闸门控制流量,在过渡流态水流发生跃离时,台阶坝面上出现了较强的水翅,流态很差.经过试验研究,通过设置过渡台阶即改变部分台阶的高度,有效地消除了水翅,改善了流态.  相似文献   

6.
本文简单介绍了台阶式消能工在国内外的应用和发展前景,并以太湖水库工程为例,通过流体仿真软件对该工程的台阶式溢流坝和光滑溢流坝进行数值仿真,对比研究两种溢流坝体形的消能效果、压强场和速度场等.结果表明,台阶式溢流坝的消能主要集中在台阶上,相对于光滑溢洪道,因其减小对下游的冲刷而降低了工程投资.  相似文献   

7.
对中孔台阶式溢流坝水工模型试验的研究成果进行了介绍,通过水工模型试验对中孔台阶式溢流坝堰面及台阶高度进行验证,抛物线型堰面及台阶高度设计合理。台阶式溢流坝的泄流能力略小于设计泄流能力,沿线均为正压,仅在弧门后处出现负压,但负压值较小,不会出现空蚀破坏;随着下泄流量增加台阶上深增大,单宽流量小于20 m3/(s·m)时台阶消能挑流消能效果较好。试验结果已被设计单位采用。  相似文献   

8.
印尼西索肯抽水蓄能电站上水库为碾压混凝土坝,泄水建筑物具有单宽流量小、堰顶无闸门控制等特点,经过世行专家审查、多方案的比较和研究论证,最终将原设计的光面溢流坝优化为台阶式溢洪道,较好地解决了该工程上水库的泄洪消能问题,而且台阶式溢洪道施工与大坝——浇筑紧密结合,经济效益明显。  相似文献   

9.
光明水电站二期工程泄洪建筑物采用台阶式溢流坝的型式,坝面消能率达50%以上,消能效果好,节省了下游消能工的工程投资。  相似文献   

10.
乐昌峡水利枢纽工程坝址处河道狭窄,枢纽工程泄水建筑物(溢流坝和放水底孔)平面布置基本占据了坝址河床面宽度,且溢流坝的泄洪落差和单宽流量较大,电站尾水出水口靠近溢流坝,因此,溢流坝和放水底孔泄洪安全是枢纽工程的关键技术问题。通过水力模型试验研究,对溢流坝和放水底孔消能工体型进行了优化,改善了其运行水力特性,妥善解决了其泄洪消能防冲的问题。  相似文献   

11.
惠州抽水蓄能电站上库溢流坝阶梯消能试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍惠州抽水蓄能电站工程概况,建议将上库溢流坝挑流消能改为底流消能方式。通过水力模型试验研究,推荐溢流坝采用“坝面削角阶梯+底流消力池”的联合消能方案。试验表明,削角阶梯坝面末端泄流的动能只占相应光滑坝面动能的30%以下,相应动能消能率达70%以上,消能效果较显著,大幅度减小了溢流坝下游消力池的尺寸和工程量。  相似文献   

12.
针对某水电站坝址河道狭窄现状,采用放空洞、旋流竖井泄洪洞与导流洞"三洞合一"技术优化枢纽布置。通过模型试验,分析旋流竖井泄洪洞泄流能力及相关水力特性,评价了结构尺寸设计的合理性。提出在放空洞连接段采用曲线型阶梯消能工的措施,通过试验得到了优化体型。研究表明,采用曲线型阶梯消能工后,连接段流态平稳,水流掺气充分,并且消能效果显著,在单宽流量为54.3 m3/(s.m)时阶梯段的消能率达到了43%。在洞内连接段布置阶梯消能工可有效改善枢纽布置。  相似文献   

13.
长塘水电站大坝为碾压混凝土双曲拱坝,最大坝高88 m,采用3表孔+1中孔泄洪消能方式。本文介绍了泄洪消能布置方案的研究,泄水建筑物体型优化,以及3个溢流表孔采用锥形体鼻坎体型,解决长塘泄洪中出现的向心水流和消能防冲问题的研究成果。  相似文献   

14.
采用几何比尺为1∶30的大比尺整体枢纽水工模型,根据重力相似准则,进行了龙潭沟水库溢流坝泄洪消能水力学试验研究。试验结果表明,设计洪水时,原设计方案及修改方案都不会对下游河床造成冲刷;下游河道水流平稳,流速分布均匀。校核洪水时,随着溢流坝过坝流量的增加,单宽流量增加坝面水深增大,原设计光滑溢流坝面沿程水流掺气消能效果欠佳,下游流速大、水流紊乱,挑流水舌下游造成严重冲刷,影响泄洪安全。通过方案修改优化,提出阶梯溢流坝台阶尺寸为0.90 m×0.72 m+连续挑坎方案新型消能形式,宣泄校核洪水时消能率较高,且下游河道水流平稳,流速较低且分布均匀,满足龙潭沟水库工程的安全泄洪。  相似文献   

15.
台阶坝面消能水气两相流数值模拟   总被引:1,自引:0,他引:1  
 采用VOF法模拟自由表面,用非结构网格来处理复杂的边界形状,并根据边界形式进行适当的分区,利用k-ε气液两相流模拟光面和台阶溢流面的流场,得到了溢流面的流场、水面线以及消能率等相关水力参数。数值模拟试验结果表明,台阶溢流坝面水流紊动掺气充分,消能率较高,并与物理模型试验结果进行对比分析,二者吻合良好。  相似文献   

16.
国内某混凝土重力坝采用了与传统方式不同的高低坎多孔淹没射流消能方式。为宣泄各级流 量洪水与调整枢纽水流流态,在溢流坝段中间设置了隔墙结构。然而坝面隔墙位于消力池水跃跃首位 置,水流流态十分复杂,其动力响应和稳定性问题十分突出。针对工程实践中的隔墙安全问题,本文 基于模型试验并结合数值模拟,分析了该坝坝面隔墙在复杂工作条件下的静动力特性,讨论了其结构 特征与流激振动安全性之间的关系,并对其的稳定性进行了评价,得出结论:该工程泄槽隔墙在结构 设计时应采取适当措施予以加强,且研究成果可为今后类似工程提供参考。  相似文献   

17.
吴启和  张国志 《人民长江》2018,49(14):105-109
水利枢纽工程改扩建过程中,为协调施工与泄洪的关系,往往采用过水围堰实现枯水期挡水施工、汛期过流泄洪。汛期泄洪时施工围堰的水力指标三维性强、沿程变化较大,处于泄洪建筑物下游消能区内的围堰段受水流冲刷强度较大,而远离消能区的围堰段受冲刷强度相对较小。为寻求安全、经济的围堰防护方式,采用三维数学模型模拟了某枢纽船闸改建工程泄洪时坝下水流流场,重点分析了围堰附近流态、流速分布、涡量分布及压力分布特性。研究结果表明:下泄水流在消能区围堰附近形成水跃,强烈紊动水流顶冲围堰;在横向围堰与上游局部纵向围堰区域形成高流速、高涡量、非静压作用区域,该区域需加强防护。研究成果为该工程围堰分段、分区防护提供了科学依据,也可供类似工程参考。  相似文献   

18.
1 . INTRODUCTIONThesteppedspillwayhadbeenusedatthebeginningoftwentycentury[1 ] .In 1 971 ,Esseryetal.[2 ] conductedamodeltestforthedesignof  相似文献   

19.
为研究弯道对溢流坝闸孔水流水力特性的影响,探求弯道处水流进入闸室运动状态的优化措施,以某水库弯道处溢流坝为例建立物理模型。通过对不同流量级下试验数据分析,探讨弯道处某水库溢流坝闸孔挑流对左右岸稳定性、闸孔泄流能力的影响,同时运用 Flow-3d 软件设置导墙措施进行优化数值模拟。结果表明:水流在闸室以螺旋式向下泄流,且在闸室及溢流面上左右碰撞和交汇,使得水流极其不稳定,对左右岸稳定影响极大且降低闸孔泄流能力,对相邻闸孔泄流量增大值的幅度有所减小,最大差值从 1.95 m3/s 降为 0.95 m3/s;设置导墙可以有效减缓弯道对闸孔挑流的水力稳定性的影响,提高闸孔水流泄流能力,为弯道处溢流坝建设提供理论参考。  相似文献   

20.
为探究在堰顶增设护墙以及护墙高度对琴键堰泄流能力的影响,通过模型试验对比分析了8种不同高度护墙琴键堰的泄流能力,并通过数值模拟对5种不同高度护墙琴键堰各溢流前缘的泄流量、水面形态以及流速分布等特征进行了分析。结果表明:相较于基础体型,增设护墙提高了进口和出口宫室的泄流效率和泄流量占比,提高了侧堰泄流量,减少了侧堰溢流碰撞,提高了水流下泄流速,从而提升了琴键堰的泄流能力;增设护墙高度为堰高的13%时,泄流能力提升最大,当相对水头 H/P<0.20、0.20相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号