首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
液相分解是一些合金在快速凝固时产生的特殊相变行为。研究了不同冷却速度下Cu-30%Fe合金的凝固过程。Cu-30%Fe二元合金铸锭的微观组织是由铜基体和铁枝晶所组成。当过冷度较大时,位于样品自由表面区域比接近冷却铜板区域的冷却速度小,铁枝晶的存在是该区域微观组织的最大特征,它反映了该区域的凝固方式为正常的凝固方式。样品中心层微观组织的最大特征是存在着尺寸较大的铁球形粒子,它反映了在该区域Cu-30%Fe熔体的凝固过程中过冷液相经历了液相分解过程。数量众多的直径约为几微米的铁粒子和铜基体组成了冷却表面的微观组织。这些铁粒子是被细化了的液相分解铁粒子。液相分解会使合金微观组织产生一定程度的粗化,但提高凝固过程的冷却速度可以显著细化液相分解组织。  相似文献   

2.
利用自行设计的脉冲电流发生装置和高温坩埚炉研究了脉冲电流对Fe70Cr18Ni12合金凝固组织的影响.结果表明,脉冲电流可明显细化Fe70Cr18Ni12合金的凝固组织,使该合金的晶粒尺寸由240 μm细化到1.8 μm;同时脉冲电流处理可改变合金凝固组织中奥氏体相和铁素体相的相对含量.  相似文献   

3.
采用电解纯铁通过高温钼丝炉制备含有不同数量异质核心的试样,用差热分析法分别测定了纯铁和高洁净钢试样在相同冷却速度下的过冷度.结果发现,随着洁净度的提高,高洁净钢和纯铁凝固的过冷度增加,形核功降低,临界晶核半径变小,形核率增大,凝固组织中晶粒的数量增加,晶粒得到细化.在洁净度相同的情况下,高洁净钢形核凝固的过冷度比纯铁小.  相似文献   

4.
采用快速凝固技术制备了Cu-Fe合金。使用VHX-600超景深显微镜对Cu-Fe合金快速凝固组织进行观察,且与其普通凝固条件下的微观组织作对比,研究了快速凝固对铜铁合金的凝固过程和微观组织的影响。结果表明:快速凝固可以产生很大的过冷度,Cu-Fe合金与Cu-Co合金一样在快速凝固过程中发生液相分解。  相似文献   

5.
袁国  张元祥  王洋  方烽  李振垒  王国栋 《钢铁》2023,(9):157-166
薄带铸轧通过水冷铜辊将液态合金直接制备成1.5~3.0 mm的薄带,具有亚快速凝固和近终成形的显著特点,能够提高液相的凝固过冷度和固-液界面处温度梯度,从而显著影响合金的组织、织构和第二相演变过程,在特种合金制备方面具有巨大的工艺潜力。通过薄带铸轧获得了Fe-Si、Fe-Ga以及Fe-Cr合金铸带,通过金相、扫描电镜(SEM)、电子背散射衍射(EBSD)和透射电镜(TEM)等技术观察凝固组织中低能量晶界的微观形貌、比例、分布等特点,并设计了模型试验验证了低能量晶界的形成原因。结果表明,Fe-Si/Cr合金在熔池大过冷度条件下通过晶粒/晶核间的界面选择作用形成Σ1/Σ3/Σ5/Σ9等特殊晶界,晶界能量等级与过冷度大小密切相关,即过冷度较大时,Σ5/Σ9等高Σ值晶界可以形成(Σ为重合位置点阵晶界的重位点阵密度),而温度升高后,能量最低的Σ1晶界比例较高。通过偏晶合金构建和复现了这种晶粒之间的界面选择作用。低能量晶界迁移速率低,可以起到稳定基体晶粒尺寸诱发异常长大的效果,所以通过工业产线获得的Fe-1.5%Si铸带实现了{100}取向晶粒异常长大,而且在轧制-退火过程中Cube得到极大强化,...  相似文献   

6.
细化剂和冷却速率对Al-Mg-Mn合金凝固组织的影响   总被引:1,自引:1,他引:0  
细化剂含量和冷却速率对凝固过程具有重要影响.分别加入不同含量的Al-3Ti-B晶粒细化剂,研究其对一种Al-Mg-Mn合金晶粒组织的影响.结果表明,随着晶粒细化剂含量的增加,晶粒愈加细小,在本实验范围内当细化剂含量为0.1%Ti时,组织最为均匀细小.采用连续测温的方法,测定了使用不同铸模时,铸锭的冷却速率,并分析了冷却速率对凝固组织的影响.与使用耐火材料铸模相比,使用石墨铸模时,铸锭的冷却速率提高1~2个数量级,铸态组织得到显著细化,平均晶粒尺寸由138μm细化到35μm.  相似文献   

7.
采用电磁悬浮方法,通过原位观察再辉曲线进行过冷Ti-46Al-7Nb亚包晶合金的快速凝固研究,获得的最大过冷度为240 K。在一定过冷度下对悬浮的熔体进行铜基底悬淬,进而对凝固合金的微观组织进行分析。超过一定的临界过冷度(ΔT*=205 K),凝固模式将从具有包晶转变特征向包晶转变被抑制转化。当熔体初始过冷度ΔT≤ΔT*时,遵循包晶合金的典型凝固规律,β相作为初生相析出,在随后的冷却过程中包晶相α以包晶反应、包晶转变的方式析出。当ΔTΔT*时,β相直接凝固,包晶相α的析出被抑制。包晶反应能否发生取决于包晶相α的孕育时间τP与再辉后熔体完全β相凝固所需的时间tβ的相对大小。当过冷度相差不大时,通过改变凝固过程的冷速,组织中获得β相向α"相的马氏体转变。  相似文献   

8.
Y对AZ31镁合金晶粒细化作用的研究   总被引:1,自引:0,他引:1  
通过在AZ31镁合金中加入稀土元素Y,采用金相分析、SEM、EDX、XRD等手段,研究Y对合金的晶粒细化效果,井通过拉伸实验以及断口分析,考察了晶粒细化效果对材料力学性能的影响,并对细化机理进行了探讨。结果表明,AZ31合金中添加微量稀土元素Y,晶粒可明显细化为均匀细小的等轴晶,由未细化的400μm细化至40~50μm,合金的力学性能得到提高。Y与合金中的Al结合生成高熔点、高热稳定的稀土相Al2Y,造成凝固过程中固液界面前沿成分过冷度增大,是稀土元素细化镁合金晶粒的主要原因。  相似文献   

9.
袁孚胜  钟海燕  金平  田军涛 《铝加工》2010,(4):19-21,26
研究了稀土元素Ce的不同加入量对铸态Cu—Si—Ni合金电导率、硬度和组织的影响。研究结果表明:稀土元素Ce能净化铜基体、细化晶粒、提高cu—si—Ni合金的电导率及硬度,当稀土元素Ce的加入量为0.06%时Cu—Si—Ni合金的电导率和硬度最高。  相似文献   

10.
研究了强磁场对Cu-25%Ag(质量分数)合金凝固组织的影响,分析了不同磁场条件对合金凝固组织的作用机理.研究发现,均恒磁场和梯度磁场对合金的凝固组织有重要影响,改变了富Cu枝晶形貌和尺寸,无磁场条件下初生富Cu枝晶分布不均匀,一次枝晶比较长且粗大,枝晶主要以柱状枝晶为主;在12T磁场条件下,富Cu枝晶分布比较均匀,一次枝晶变短、粗化,枝晶主要以胞状枝晶为主;在负梯度磁场条件下,富Cu枝晶分布不均匀,在试样下部,树枝晶减少,以小平面方式生长的粗大胞晶为主.通过实验研究表明,利用均恒强磁场控制Cu-Ag合金凝固组织,细化晶粒、减小偏析是具有可行性的.  相似文献   

11.
The effect of undercooling on grain structure is investigated in pure nickel, Ni75Cu25, and DD3 singlecrystal superalloy by employing the method of molten salt denucleating combined with thermal cycling. Meanwhile, a comparison of factors that may be related to structure formation is performed and the difference in the refined structure between Ni75Cu25 alloy and DD3 single-crystal superalloy is explained. Only one grain refinement occurs at the critical undercooling in pure nickel, whereas two take place at both low and high undercoolings in Ni75Cu25 and DD3 single-crystal superalloy melts. The first grain refinement at low undercoolings mainly originates from dendrite remelting driven by the chemical superheating produced in recalescence, and the second one at high undercoolings is due to the recrystallization process as a result of the high stress provided in the rapid solidification after high undercooling. Dislocation morphology evolution in as-solidified structure is also provided by the transmission electron microscopy (TEM) technique to further verify the recrystallization mechanism.  相似文献   

12.

Grain refinement phenomena during the microstructural evolution upon nonequilibrium solidification of deeply undercooled Ni-20 at. pct Cu melts were systematically investigated. The dendrite growth in the bulk undercooled melts was captured by a high-speed camera. The first kind of grain refinement occurring in the low undercooling regimes was explained by a current grain refinement model. Besides, for the dendrite melting mechanism, the stress originating from the solidification contraction and thermal strain in the FMZ during rapid solidification could be a main mechanism causing the second kind of grain refinement above the critical undercooling. This internal stress led to the distortion and breakup of the primary dendrites and was semiquantitatively described by a corrected stress accumulation model. It was found that the stress-induced recrystallization could make the primary microstructures refine substantially after recalescence. A new method, i.e., rapidly quenching the deeply undercooled alloy melts before recalescence, was developed in the present work to produce crystalline alloys, which were still in the cold-worked state and, thus, had the driven force for recrystallization.

  相似文献   

13.
稀土对Al-Mg合金铸态组织的影响   总被引:5,自引:0,他引:5  
将混合稀土和La加入Al—Mg合金中。研究混合稀土和La在Al—Mg合金中的作用。结果表明,混合稀土和La对A1-Mg合金都起细化晶粒作用,其主要机理是稀土的加入引起凝固过程中溶质再分配造成固液界面前沿成分过冷度增大,但La的细化效果更明显。  相似文献   

14.
Increased interest has been paid to grain boundary segregation in alloy K-500 due to severe intergranular cracking recently observed in forged bars. However, little systematic study of this segregation has been performed so far. A detailed auger electron spectroscopy (AES) study of grain boundary segregation in alloy K-500 has been carried out as a function of alloy chemistry. To determine C segregation, the C and O contamination rates in a vacuum chamber were measured and the necessary condition for C grain boundary segregation determination was established. It has been found that severe C, Al, and Cu segregation to grain boundaries occurred and depended on alloy chemistry. High bulk Ni and low bulk Al promoted C and Al grain boundary segregation, and low bulk Ni and high bulk Al significantly enhanced Cu segregation to grain boundaries. The depth profiles of intergranularly segregated elements also showed different features for high and low Ni content alloys. In high Ni alloys, C and Al levels dropped continuously as a function of distance from the grain boundaries but the Cu level dropped only slightly. In low Ni alloys, the Al and C levels rose from relatively low grain boundary levels to a peak at a certain distance from the grain boundary where the high grain boundary Cu level dramatically dropped. Transmission electron microscope (TEM) observation revealed a grain boundaryγ′-depleted zone followed by a region with coarser and denserγ′ particles in low Ni and high Al alloys but quite uniformly distributedγ′ particles with no depleted zone in high Ni and low Al alloys. These can be explained by the observed segregation behavior. The occurrence of Cu segregation is explained according to available theories about surface segregation in binary Ni-Cu alloys, and the segregation of C and Al to grain boundaries is suggested to be probably due to their interaction with Ni and Cu.  相似文献   

15.
Phase selection and microstructure evolution in nonequilibrium solidification of ternary eutectic Fe40Ni40B20 alloy have been studied. It is shown that γ-(Fe, Ni) and (Fe, Ni)3B prevail in all the as-solidified samples. No metastable phase has been found in the deeply undercooled samples. This is explained as resulting from the size effect of undercooled solidification. At small and medium undercoolings, the dendrite γ-(Fe, Ni) appears as the leading phase. This is ascribed to the existence of the skewed coupled growth zone in FeNiB alloy. With increasing undercooling, the amount of dendrites first increases and then decreases, accompanied by a transition from regular eutectic to anomalous eutectic. The formation mechanisms of the anomalous eutectics are discussed. Two kinds of microstructure refinement are found with increasing undercooling in a natural or water cooling condition. However, for melts with the same undercooling, the as-solidified microstructure refines first, and then coarsens with an increasing cooling rate. The experimental results show that the nanostructure eutectic cell has been obtained in the case of Ga-In alloy bath cooling with an initial melt undercooling of approximately 50 K (50 °C).  相似文献   

16.
Crystal multiplication in undercooled Cu + 2 Pct Sn alloy   总被引:1,自引:0,他引:1  
The effects of undercooling (AT) from 10 to 175° on grain structure were observed in a Cu + 2 wt pct Sn alloy, in which grain refinement does not occur at large degrees of under-cooling. Quenching soon after recalescence retained transient grain structures not previ-ously reported in the literature. Crystal multiplication by dendrite fragmentation occur-red when undercooling below the liquidus lay in the range △T = 10 to 70°, and resulted in complete grain refinement in the range △T = 50 to 70°. Fragmentation affected primary, secondary and tertiary dendrite arms during and after recalescence. At △T = 70° a sharp transition occurred to a radiating fan-shaped structure of twin-related grains ori-ginating from a single point of nucleation, with no evidence of fragmentation. It is pro-posed that the transition results from a change in the free dendritic growth mode, the new shape being a wholly primary form without side-arms. The absence of fragmentation in this range (△T > 70°) suggests that self-buckling contributes to fragmentation in the other range (△T < 70°) and could be at least equal in importance to remelting. Formerly with the University of Queensland, Australia, and the National Research Council of Canada, Ottawa  相似文献   

17.

Al-80 pctSi-1.0 pctRE alloy was levitated and melted using the electromagnetic levitation facility in combination with a laser heating unit. The growth morphologies of primary silicon were observed using a high-speed video, and the microstructure was analyzed by the scanning electron microscopy. The morphologies of primary silicon at low, intermediate, and high undercooling are dendrites, fragmented bulks and granular grains, and equiaxed grains, respectively. In addition, the growth velocities of primary silicon were measured, which were consistent with the theoretical prediction. The microstructure refinements of primary silicon played a dominant role in its large microhardness, which increased with the increase of undercooling. Moreover, the hardening effect of dendritic structure was stronger than that of equiaxed grain.

  相似文献   

18.
The effect of La addition (0–0.30 wt%) on the microstructure and hardness of rheological squeeze casting brass alloys was experimentally investigated. The rheological squeeze casting process is improved by controlling the wall surface crystals and melt flow rate to realise the preparation of semi-solid melt with flow, and a brass alloy workpiece with La is produced. The microstructure and properties of the brass alloy samples were investigated using metallography, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and hardness testing. The results indicate that the hardness of the rheological squeeze casting brass alloy is increased by 20.4% from 108 to 130 HBW with an increase in the La content from 0 to 0.30 wt%. The microstructural analysis results show that La significantly refines the primary α-phase grains, and the main mechanism is the constitutional undercooling and heterogeneous nucleation caused by the La enrichment in the front of the solid–liquid interface. The squeeze pressure promotes undercooling, which improves the nucleation rate and affects the solute diffusion and nucleus growth. The dual effects of these two aspects aggravate the grain refinement process, consequently increasing the number of grain boundaries and improving the hardness of the brass alloy.  相似文献   

19.
研究了真空环境中TA32钛合金板材在温度950℃、应变速率5.32×10^-4~2.08×10^-2 s^-1条件下的超塑性变形行为。结果表明,在不同应变速率条件下,合金的流变应力曲线特征和显微组织演变显著不同。在应变速率较低(5.32×10^-4~3.33×10^-3 s^-1)条件下,拉伸真应力-真应变曲线呈传统超塑变形的稳态流动特征,变形后的合金中初生α相晶粒尺寸较大;在高应变速率(8.31×10^-3 s^-1~2.08×10^-2 s^-1)条件下,拉伸真应力-真应变曲线中流变应力增大到峰值后快速单调递减直至试样断裂,合金变形过程中初生α相发生动态再结晶,晶粒尺寸较低应变速率条件下显著细化。950℃时,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间;当应变速率为5.32×10^-4 s^-1时,具有最佳的超塑性,拉伸延伸率可达519%。断裂区形貌分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

20.
The efficiency of strengthening induced by microstructure refinement to an ultrafine-grained (UFG) state is studied on commercial purity VT1-0 titanium and two-phase VT6 and VT22 titanium alloys. An UFG structure with a grain size <0.5 μm is formed by multiaxial isothermal deformation. The refinement of a titanium microstructure to a grain size of ~0.4 μm is found to result in an almost twofold increase in the strength and the fatigue limit. The strength of a VT22 alloy with an UFG structure is equal to that of the thermally strengthened alloy. The strength and fatigue limit of a VT6 alloy with an UFG structure are higher than those of the thermally strengthened state by approximately 25%. The strengthening by microstructure refinement is found to be expedient for low and medium alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号