首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《塑料科技》2016,(10):86-89
以聚乙二醇/氧化石墨烯(PEG/GO)定型相变材料为测试样品,采用差示扫描量热法(DSC)对其熔融、结晶性能进行了表征,研究了测试速率(即升/降温速率)对该相变材料熔融、结晶温度和热焓的影响。结果表明:随着降温速率的增加,PEG/GO相变材料的结晶温度逐渐降低;随着升温速率的增加,材料的熔融温度逐渐提升;测试速率越高,焓值越小;随着GO加入量的增加,升降温时的焓值均呈现降低的趋势;相同GO含量的PEG/GO定型相变材料,其熔融焓总是大于同等测试速率下得到的结晶焓,而且测试速率越快,差值越大;在相同测试速率下,GO的添加量基本不会对PEG/GO相变材料的熔融、结晶温度产生影响。  相似文献   

2.
以聚乙二醇(PEG)为相变材料,导热性与吸附性良好的膨胀石墨(EG)和碳纳米管(CNTs)为支撑材料,制备出CNTs/EG/PEG定形相变材料。分别采用恒温烘箱、差示扫描量热仪(DSC)、导热系数测定仪对CNTs/EG/PEG定形相变材料的定形特性、储热性能以及导热性能进行研究表征。实验结果表明,PEG含量越多的该定形相变材料的界面更加的均匀;随着EG和CNTs的含量增加,CNTs/EG/PEG复合材料的定形效果越来越好,熔融焓与结晶焓逐渐降低,导热系数逐渐增加。  相似文献   

3.
以聚乙二醇(PEG)作为相变工作物质,以具有优异导热性能的石墨烯纳米片(GNPs)作为导热填料,通过熔融共混法制备出一系列不同GNPs含量的PEG/GNPs复合相变材料。采用激光导热仪、差示扫描量热仪、扫描电子显微镜、X射线衍射仪、红外光谱仪等测试PEG/GNPs复合相变材料的导热性能、热物性、微观形貌、结晶性能及化学组成。结果表明,GNPs均匀分散于PEG基体中,形成能够加快热量传递的导热通路,复合材料体系的导热系数得以显著提高,而相变焓仅仅略微下降,当GNPs含量为2%时,复合材料体系的导热系数是PEG的249.7%,而相变焓损失率却仅为3.9%;PEG与GNPs二者间仅是物理吸附,并未发生化学反应,复合材料体系的结晶性能良好;PEG与GNPs复合相变材料的热响应速度更快,能源利用率因而更高。  相似文献   

4.
以聚乙二醇(PEG)作为相变工作物质,以具有优异导热性能的石墨烯纳米片(GNPs)作为导热填料,通过熔融共混法制备出一系列不同GNPs含量的PEG/GNPs复合相变材料。采用激光导热仪、差示扫描量热仪、扫描电子显微镜、X射线衍射仪、红外光谱仪等测试PEG/GNPs复合相变材料的导热性能、热物性、微观形貌、结晶性能及化学组成。结果表明,GNPs均匀分散于PEG基体中,形成能够加快热量传递的导热通路,复合材料体系的导热系数得以显著提高,而相变焓仅仅略微下降,当GNPs含量为2%时,复合材料体系的导热系数是PEG的249.7%,而相变焓损失率却仅为3.9%;PEG与GNPs二者间仅是物理吸附,并未发生化学反应,复合材料体系的结晶性能良好;PEG与GNPs复合相变材料的热响应速度更快,能源利用率因而更高。  相似文献   

5.
《塑料科技》2015,(7):67-69
以高密度聚乙烯(HDPE)、石蜡为相变主材料,活性炭为吸附载体材料,采用熔融共混法制备了HDPE/石蜡/活性炭三元相变储能材料,并分别利用真空烘箱和差示扫描量热仪(DSC)对该相变储能材料的宏观相变转换温度和热性能进行了表征。结果表明:随着HDPE/石蜡/活性炭相变储能材料中石蜡含量的增加(HDPE的含量相应减少),活性炭对石蜡的吸附能力相对降低;HDPE/石蜡/活性炭相变材料中,HDPE的实际焓值高于其理论焓值。  相似文献   

6.
采用熔融共混法和模压法,以聚乙二醇(PEG)为相变材料,聚氯乙烯(PVC)为定形基材,废旧印刷电路板非金属粉(N-PCB)为增强填料,制备了一种新型的复合定形相变材料。通过差示扫描量热仪对材料的相变过程进行了表征。结果发现,添加PEG20000质量分数为30%时,复合材料的相变熔融焓和凝固焓最大,分别为46.61 J/g和47.62 J/g,相变温度区间为65.0~78.0℃。另外,还研究了N-PCB作为填料对于新型复合定形相变材料的密度、热变形温度和力学性能的影响,结果发现在PEG20000/PVC体系中N-PCB添加量为30%时,复合材料的综合性能最优。  相似文献   

7.
以微晶纤维素(MCC)为原料,制备纤维素海绵(Cell),并以其作为基体,通过物理共混的方法与聚乙二醇(PEG)PEG-6000进行复合,制备聚乙二醇/纤维素相变材料(PCMs),研究了PCMs的结构与相变储能性能。实验结果表明:PCMs中PEG的质量分数可以达到90.77%,且相变过程中不会发生液体泄漏的问题。FT-IR分析表明纤维素基体和PEG之间存在明显的氢键作用,无新化合物产生。XRD分析结果表明:与纯PEG-6000相比,纤维素基体的加入不会改变PEG的结晶形态,但会降低PEG的结晶度。DSC结果表明,PCMs的熔融焓(ΔHf)随着PCMs中PEG质量分数的增加而增大,ΔHf最高可达146.88J/g(PCM5),但均小于纯的PEG(179.09J/g);PCMs的结晶焓(ΔHc)随着PCMs中PEG质量分数的增加而降低,ΔHc的绝对值最高可达137.81J/g。TG分析表明,当环境温度小于250℃时,PCMs的热稳定性较好。  相似文献   

8.
以制备的具有微/纳多孔结构的纤维素为骨架,聚乙二醇(PEG)-4000为相变基,通过吸附―混合机制制备出不同PEG含量的多孔纤维素/PEG复合相变粉体材料(PCMs)。傅里叶变换红外光谱、扫描电子显微镜分析和复合相变粉体孔隙率测定结果表明,多孔纤维素与PEG能很好地相互结合;X射线衍射、差示扫描量热及热重分析结果表明,PCMs相变焓随PEG含量的增加而逐渐增加,PEG理论含量为50%(wt)时,多孔纤维素/PEG复合相变粉体相变焓值为95.53 J/g。多孔纤维素/PEG复合相变粉体的热稳定性好。  相似文献   

9.
以聚乙二醇(PEG)为相变材料,以3-氨丙基三乙氧基硅烷(APS)改性的二氧化硅(SiO2)为支撑材料,以氧化壁碳纳米管(O-CNTs)为导热增强材料,采用溶胶-凝胶法成功制备了PEG/APS-SiO2/O-CNTs导热增强型复合相变材料。通过FTIR、XRD、SEM、DSC等对材料的结构和热性能进行了表征。当PEG含量为82.0%时,复合相变材料仍然具有良好定型效果,熔化焓和结晶焓达到134.2 J/g、126.6 J/g,而且材料具有很好的储热稳定性,300次热循环后,其储热焓值仅下降3.3%。相比于纯PEG,添加了0.6%的O-CNTs的复合相变材料的导热增强率为28.1%, 达到0.41W/(m?K)。红外热成像结果表明,复合相变材料的储能效率明显提高。  相似文献   

10.
制备了以聚甲基丙烯酸为骨架、聚乙二醇(PEG)为工作物质的新型高分子固-固相变储能材料。对PEG和几种不同的相变材料分别进行DSC测试,对PEG分子量为4000的相变材料进行非等温DSC测试。结果表明,与纯PEG相比,相变材料的相转变温度降低12.3℃,相变焓降低45 J/g。随着聚乙二醇分子量由2000依次增加为4000,6000,10000,相变材料的相转变温度分别为44.8,52.9,63.8和74.3℃,相变焓分别为142.9,203.2,190.1,231.4 J/g,均有增加的趋势。随着升温速率增加,PEG分子量为4000的PCM的相变温度依次升高,分别为47.4,50.0和53.1℃。  相似文献   

11.
研究了水滑石(HT)/离子键聚合物(Surlyn)/聚乙二醇(PEG)复合成核剂对聚对苯二甲酸乙二醇酯(PET)非等温结晶性能的影响。通过正交实验选择最佳复合成核剂配方。差示扫描量热分析表明,HT/Surlyn/PEG复合成核剂各组分与PET的质量比为0.5/3/3/100时,PET的结晶温度提高,半结晶时间明显减少,说明PET的成核能力提高,结晶能力增强,结晶速率加快;同时,结晶放热焓和熔融吸热焓增加,说明PET的结晶度得到提高。  相似文献   

12.
制备了聚乙二醇4000-聚乙二醇20000二元低共熔混合物(PEG4000-PEG20000),并利用硅藻土的多孔结构,制备了最佳配比为2.69∶1(PEG4000-PEG20000∶硅藻土)的PEG4000-PEG20000/硅藻土复合相变材料。利用SEM、DSC等测试手段对复合相变材料的结构和性能进行了研究。结果表明:PEG4000-PEG20000通过物理吸附作用均匀分布于硅藻土的多孔结构中;复合相变材料的起始相变温度为64.4℃;终止温度为73.2℃;峰值温度为66.8℃;相变焓值为126.8 J/g。  相似文献   

13.
利用热重分析仪对不同分子量、不同支撑材料、不同配方的聚乙二醇(PEG)定形相变材料的热稳定性进行了分析。结果表明,机械加工方法有可能会对PEG分子链有破坏作用,PEG定形相变材料具有良好的热稳定性。随着PEG分子量的增加,PEG定形相变材料的热分解温度越来越高,热稳定性更好。活性炭颗粒(ACG)和膨胀石墨(EG)都会使PEG相变材料的热分解温度降低,热稳定性有所降低。随着PEG定形相变材料中支撑材料含量的增加,定形相变材料的热稳定性降低。  相似文献   

14.
以硬脂酸为相变主材料,活性炭和膨胀石墨为支撑材料,用熔融共混法制备定型相变储能材料。采用DSC,导热仪对定型相变材料进行表征。活性炭较大的比表面积,使硬脂酸在慢速结晶的过程中结晶更加完善;膨胀石墨的蠕虫状结构不利于结晶的进一步进行;利用DSC快速测试结晶性能时,支撑材料使硬脂酸结晶不完善,结晶焓降低。支撑材料的加入可以改善硬脂酸的导热性。  相似文献   

15.
以PEG作为相变材料(PCM)来储存和释放热能,以TiO_2为支撑基体,合成出聚乙二醇分子量为6000的PEG@TiO_2的复合相变储能材料。结果表明成功合成了核壳结构的PEG@TiO_2复合材料。PEG被封装在TiO_2壳中,二者之间为物理相互作用,PEG在TiO_2壳中结晶,在规则的结晶排列上没有明显的TiO_2限制。PEG@TiO_2在熔融和凝固过程中的相变焓分别为153.3 J·g~(-1)和147.0 J·g~(-1),质量分数为91.2 wt%。PEG@TiO_2经历50次加热-冷却循环后,表现出优异的热可靠性。  相似文献   

16.
以两种固-液型相变材料共混所得的复合相变材料(CPCM)为芯层,以尼龙6(PA6)切片为皮层,采用自制的复合纺丝组件通过不同于传统的熔融纺丝法,得到PA6/CPCM储能调温初生纤维,将初生纤维在80℃下拉伸5倍,制得PA6/CPCM储能调温纤维,并对其结构性能进行了表征。结果表明:PA6/CPCM初生纤维呈皮芯结构,直径约为95μm;所得纤维中CPCM质量分数约为32.9%,熔融相变温度为18.50~30.89℃,结晶相变温度为7.78~18.68℃,熔融焓、结晶焓分别为66.12,64.93 J/g;当CPCM注入量为8 m L/h时,PA6/CPCM储能调温纤维的线密度为15.57 dtex,断裂强度为2.76 c N/dtex,断裂伸长率为16.71%,该纤维可应用于冬季保暖外套中。  相似文献   

17.
采用熔融复合纺丝法,通过自制的复合纺丝组件,以聚丙烯(PP)为皮层,由脂肪酸酯类和高级酯肪族醇类组成的复合相变材料(CPCM)为芯层,制备了具有皮芯结构的CPCM/PP蓄热调温纤维,并对纤维的结构与性能进行表征。结果表明:CPCM/PP初生纤维呈皮芯结构,其直径约为100μm;当CPCM/PP质量比为55∶45时,其初生纤维在70℃下5倍拉伸后,得到的CPCM/PP蓄热调温纤维中CPCM的质量分数为53.63%,熔融相变温度与结晶相变温度分别为32.65~48.02℃和20.96~39.02℃,熔融焓和结晶焓分别为90.04,81.01 J/g,纤维线密度为10.3 dtex,断裂强度为2.59 cN/dtex,断裂伸长率为41.38%。  相似文献   

18.
通过溶液浇铸法制备了聚乙二醇/纤维素纳米微纤(PEG/CNFs)复合相变储能材料,采用差示扫描量热仪(DSC)研究了CNFs含量对该PEG/CNFs复合材料中PEG结晶行为的影响,并利用Jeziorny、Ozawa和Mo模型对DSC结果进行了非等温结晶动力学分析。结果表明:加入CNFs后,复合材料中PEG的半结晶时间(t1/2)与Avrami指数(n)下降,表明CNFs充当了PEG的成核剂;另外,CNFs含量的增加抑制了PEG晶体的生长,PEG的结晶焓(ΔHPEG)显著下降。  相似文献   

19.
选用相对分子质量分别为10 000和20 000的聚乙二醇(PEG 10000,PEG 20000)与氧化锌(ZnO)、马来酸酐(MAH)混合,再与聚丙烯(PP)共混,制备复合抗静电剂(PEG-ZnO-PP),然后将其与PP共混纺丝,制得共混纤维。研究了PEG-ZnO-PP复合抗静电剂的流动性和热性能,考察了共混纤维的力学性能和抗静电性。结果表明:复合抗静电剂的流动性和热性能因PEG的相对分子质量不同而有所不同,含PEG 10000的复合抗静电剂的流动性能较好,且其熔融热焓、熔融结晶温度、结晶放热高于含PEG 20000的复合抗静电剂。共混纤维力学性能和静电半衰期随复合抗静电剂含量的增加而减小,含PEG 20000的共混纤维抗静电效果更好。  相似文献   

20.
通过IR、DSC和X -ray研究了用化学键联法和溶液共混法制备的聚乙二醇 /二醋酸纤维素 (PEG/CDA)型相变材料的相变热焓、相变温度和结晶度等物性 ,探索了两种材料的链结构与储热性能的关系。结果表明 ,对相同PEG含量的共混材料和化学改性材料而言 ,共混物的相变焓要大于化学改性材料的相变焓 ;但化学改性物是一种固固相变材料 ,而共混物不具有固固相变特性 ,只是一种形状稳定的固液相变材料  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号