首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了实现锑冶炼砷碱渣的清洁利用及无害化处置,设计了球磨浸出—重选收锑—废碱喷淋—氧化沉砷—砷稳定固化的砷碱渣清洁利用新工艺。结果表明:常温下液固比为4:1时,砷碱渣经球磨后水浸,球磨和浸出时间分别20 min和40 min,As浸出率为96.78%,碱浸出率为97.35%,实现Sb、As和碱高效分离;为提取回收浸出渣中锑资源,通过摇床高效富集回收Sb,回收率为40%~50%,且精矿中As < 1%,Sb≥10%,可通过冶炼系统回收;基于酸碱中和原理,浸出液(高砷废碱)进入锑冶炼中烟气脱硫喷淋系统与烟气中SO2发生反应,烟气中SO2和As含量达到排放标准,实现浸出碱液和烟气SO2协同治理目的;向高砷废水加入H2O2对砷进行氧化,再加入脱砷剂(生物制剂)与砷发生沉淀反应而脱除,经两段脱砷后,废水中As含量降低至150 mg/m3, 脱砷效率分别为88.4%和92.5%;产生的脱砷渣采用铁盐稳定剂处理,在添加质量比为9%时固化体As毒性浸出浓度从348.67 mg/L降至0.65 mg/L,达到危险废物填埋场入场标准。工业扩大试验结果表明,新工艺可达到以废治废、清洁利用砷碱渣目的。   相似文献   

2.
含砷烟尘选择性浸出砷及其动力学   总被引:1,自引:0,他引:1  
易宇  叶逢春  王红军 《矿冶工程》2020,40(6):99-102
采用氢氧化钠-硫磺从含砷烟尘中选择性浸出砷,研究了浸出过程的工艺条件和动力学。结果表明: 在氢氧化钠浓度3.0 mol/L、硫磺用量0.075 g/g、液固比6∶1、浸出温度95 ℃、浸出时间2.0 h、搅拌速度400 r/min条件下,砷、锑、铅和锌浸出率分别为99.27%、1.83%、0.20%和0.15%,浸出渣中砷含量为0.08%; 砷的浸出过程主要受固膜内扩散控制,浸出反应表观活化能为7.62 kJ/mol。  相似文献   

3.
在氢氧化钠溶液中釆用通氧加压强化浸出工艺对黑铜泥进行脱砷,实验结果表明:在NaOH浓度为50 g/L、浸出温度140 ℃、氧分压0.6 MPa、液固比8 mL/g、浸出时间1.5 h、搅拌速度600 r/min的较优工艺条件下,黑铜泥中砷浸出率为96.74%,铜、锑、铋浸出率分别仅为1.19%、2.23%、1.08%,实现了砷的选择性脱除。碱浸液采用冷却结晶回收砷酸钠,结晶母液补加适量氢氧化钠返回浸出。渣中锑、铋、银等有价金属得到高度富集。  相似文献   

4.
以硫酸为浸出介质,通过响应面方法和Box-Behnken设计(BBD)对浸出条件,包括酸浓度、液固比和温度进行优化。结果表明,酸浓度是最重要的因素,其次是温度和液固比。通过响应面优化,确定在酸浓度为116.77 g/L,液固比为8,温度为170℃的较佳工艺条件下,铜转炉灰中砷的提取率达到94.49%,说明响应面方法可以成功优化铅转炉砷灰的酸提取实验。   相似文献   

5.
以山东省某冶炼企业产生的污酸为研究对象,开展氧化-中和-硫化协同处理污酸中铊、砷的试验研究,分别考察了FeS/As质量比、pH值、FeCl3/FeS摩尔比、温度、反应时间、搅拌强度等因素对污酸中铊、砷去除率的影响。实验得出最优工艺条件为FeCl3/FeS摩尔比为3/1,FeS/As质量比为3/1,氧化反应pH值为3,硫化反应pH值为8,硫化反应温度为30℃,转速为250r/min,氧化反应和硫化反应时间均为30min。结果表明,最优工艺条件下,铊的浓度由0.64mg/L降至0.004μg/L,砷的浓度由11.23g/L降至5mg/L以下,砷、铊去除率均能达到99.96%。  相似文献   

6.
针对传统石灰?铁盐污酸处理工艺产出的中和渣含砷高、不能进入柔性填埋场堆存的现状,采用基于无定形砷酸铁沉淀的预中和?铁盐沉砷方法,降低石灰?铁盐污酸处理流程中和渣砷含量,确保含砷渣能够进入柔性填埋场。热力学分析发现,砷酸铁稳定存在的pH值为0~5.2;在pH=4~5时,As-Fe-H2O体系中砷酸铁可以形成并稳定存在,同时不会产生Fe(OH)3沉淀。研究表明,石灰乳预中和过程终点pH为4.5时,没有砷酸钙沉淀产生或少量产生,预中和石膏含砷小于3%。铁盐沉砷过程温度和初始pH值的升高,有利于降低沉砷后液As浓度、增加As沉淀率和沉砷渣中As含量;但提高初始铁砷摩尔比和初始砷浓度,并不利于砷的沉淀。在低温(40oC)及较短的时间(1h)的条件下,单独采用空气或者80%氧气作氧化剂,难以获得较好的沉砷效果,必须加入适量的H2O2,以提高As3+离子的氧化效率。在优化条件下,沉砷后液平均砷浓度为2.80g/L,沉砷渣平均含砷27.01%,沉砷渣为疏松多孔的无定形砷酸铁,砷沉淀率为71.62%。沉淀反应是无定形砷酸铁生成过程的限制步骤。  相似文献   

7.
铜阳极泥综合渣中碲的回收   总被引:2,自引:0,他引:2  
姜国敏 《金属矿山》2008,38(6):142-144
某铜冶炼厂铜电解阳极泥处理过程中产生的综合渣中含碲量较高,为此进行了从该渣中浸出碲的试验研究。试验结果表明:采用常规酸浸工艺不能获得令人满意的碲浸出率;而采用以硫酸为浸出剂、KMnO4为氧化剂的氧化酸浸工艺,在浸出温度为80 ℃、液固质量比为5:1、KMnO4用量为0.008 g/g(对原料)、硫酸浓度为3.6 mol/L、浸出时间为5 h的条件下,碲的浸出率达到90.09%,同时可使渣中97.81%的铜被浸出,浸出液可进一步提取碲和铜。  相似文献   

8.
为实现高效率、低成本分离黑铜泥中的砷,以双氧水和空气为氧化剂,NaOH溶液为浸出剂,采用单因素试验法研究了常压下双氧水与NaOH用量及其加入方式、浸出温度、液固比、反应时间等对双氧水氧化碱浸黑铜泥脱砷效果的影响。结果表明,氧化碱浸黑铜泥的反应过程由外扩散、内扩散和界面化学反应3个步骤混合控制;最佳反应条件为:温度为80℃、液固比10∶1(mL/g)、反应时间6h、NaOH总用量134.32g/L、浓度为30%的双氧水总用量90mL/L;NaOH溶液分两次加入,在反应开始时和反应3h后各加入一半;双氧水采取滴加方式分批加入,在反应开始1~2h内和反应开始后的3~4h内各滴一半;反应过程中连续鼓入空气,鼓气压力0.1MPa。在此最佳条件下,砷的浸出率分为98.2%,铜、锑和铋几乎未被浸出。氧化碱浸渣中的铜以铜粉的形式存在,其相对含量达到80%,有利于后续处理。  相似文献   

9.
采用硝酸氧化酸性浸出法从高锡高砷铜阳极泥中浸出铜镍, 主要考察了硝酸添加量、反应温度、硫酸浓度、固液比和反应时间等因素对铜镍浸出效果的影响。实验结果表明, 在铜阳极泥质量20.0 g、2.0 mol/L硫酸溶液100 mL、固液比1/5、浸出温度85 ℃、浓硝酸用量2.0 mL、搅拌速度500 r/min和浸出时间90 min时, Cu和Ni平均浸出率分别达到94.58%和80.22%, 而As、Sb和Sn浸出率仅为4.52%, 1.11%和0.15%, 实现了Cu、Ni从阳极泥中的有效分离。  相似文献   

10.
以硫酸溶液为浸出剂,采用常压氧化浸出法处理铜冶炼渣以回收渣中有价金属铜。考察了浸出温度,浸出时间,硫酸浓度,浸出液固比,氧化剂(双氧水)添加量对铜浸出率的影响。试验结果表明:在未加入氧化剂时,主要发生的是铜氧化物的简单酸溶反应,硫化铜几乎不溶于浸出液,因此铜浸出率很低;而随着氧化剂添加量的增加硫化铜被氧化浸出,因此铜浸出率增加很明显。此外,铜浸出率随着浸出温度,浸出时间和浸出液固比的增大而增大。浸出过程最佳的条件为:浸出温度70℃,时间180 min,硫酸浓度2 mol/L,液固比8∶1,氧化剂(双氧水)添加量400 m L/kg。铜浸出率可达到91.2%。通过对浸出渣XRD和SEM-EDS分析可得浸出渣中主要的矿物为磁铁矿。在磁场为2T的条件下,浸出渣磁选可以得到品位53.15%的铁精矿。  相似文献   

11.
12.
在高铁生物浸铜液中通入H2S气体, 生成硫化铜渣, 双氧水-硫酸浸出硫化铜渣, 得到硫酸铜溶液, 后经蒸发浓缩、冷却结晶制得硫酸铜。研究结果表明: 当生物浸出液pH=1, 反应温度为30 ℃, 反应时间为3 h时, 在生物浸铜液中通入硫化氢, 铜沉淀率接近100%; 双氧水-硫酸浸出硫化铜渣, 当双氧水与铜物质的量之比为6.4∶1, 反应温度为50 ℃, 液固比为15∶1, 硫酸浓度为3 mol/L, 反应时间为2 h时, 铜浸出率为92.1%; 所得浸出液中硫酸浓度为343.49 g/L, Cu2+浓度为 25.33 g/L, 通过蒸发浓缩、冷却结晶得到纯度为96%的硫酸铜, 其质量达到工业用硫酸铜质量标准(GB437-93)。  相似文献   

13.
谢贤  杨子轩  童雄  侯凯  黎继永 《金属矿山》2015,44(5):181-183
易门铜冶炼渣成分复杂,铜品位为1.83%,主要铜矿物为硫化铜,占总铜的94.54%。为高效回收其中的铜,进行了选矿试验研究。结果表明,在磨矿细度为-0.045 mm占90%的情况下,采用1粗3精2扫、中矿顺序返回浮选流程处理该试样,可获得铜品位为18.27%、含银76.20g/t、铜回收率为84.86%、银回收率为44.06%的铜精矿。试验确定的选矿工艺流程较简单,不仅对铜有较好的回收效果,而且综合回收了其中的银,是该试样中铜的理想回收工艺。  相似文献   

14.
铜电解液电积脱铜制备高纯阴极铜   总被引:5,自引:2,他引:3  
利用电积法制备高纯阴极铜, 研究了添加剂、电解液温度、电流密度以及Cu2+浓度对电积法脱铜制备高纯阴极铜质量的影响。当添加剂(骨胶: 明胶: 硫脲质量比为6∶4∶5)用量为40 mg/L, 电解液温度为55 ℃, 电流密度为200 A/m2, 电解液中Cu2+浓度从48.78 g/L降至31.71 g/L时, 电积脱铜得到的阴极铜质量达到了高纯阴极铜标准(GB/T 467-1997); 其电流效率达到99.19%, 高纯阴极铜产率达到38.09%。电积脱铜制备高纯阴极铜不仅增加了阴极铜产量, 而且可大大减少电积时黑铜板和黑铜粉。  相似文献   

15.
刘维平 《矿冶工程》2007,27(6):41-43
采用高能球磨对铜精矿进行活化预处理, 并通过超声场辅助矿浆电解的方法直接利用铜精矿制备出平均粒度小于10 μm的超细铜粉。超细铜粉经油酸和丙酮的表面改性处理后, 抗氧化性能得到提高。  相似文献   

16.
通过对红透山选矿厂选矿工艺现状及原矿性质的深入研究,根据有用矿物嵌布特性和对磨矿细度与金属回收率关系的研究,确定影响红透山选矿指标提高的主要因素是磨矿细度,进而对磨矿工艺进行了改进,以改变二段磨矿介质尺寸的方式,使磨矿细度提高3%~8%,铜、锌、金、银回收率分别提高了0.71、1.57、1.20、1.33个百分点。  相似文献   

17.
为回收康西铜冶炼渣中的铜资源, 在实验室开展了浮选回收铜的试验研究。结果表明, 在磨矿细度-43 μm粒级占80%, 浮选矿浆浓度40%, 石灰用量1 000 g/t, 粗选硫化钠用量300 g/t、扫选1硫化钠用量100 g/t条件下, 采用一次粗选、二次扫选闭路浮选, 可获得铜品位27.64%、回收率94.25%的铜精矿。  相似文献   

18.
提高某难选铜硫矿石铜的回收率   总被引:4,自引:0,他引:4  
研究某难选铜硫矿石的浮选工艺,提高铜回收率。在原矿含铜1.09%,含硫32%的情况下,采用磨矿细度-74μm占70%,以ZH-01为捕收剂,用(石灰+Na2S+KG)组合抑制剂抑硫浮铜,经一粗二扫二精的工艺流程选别,获得铜品位14.2%,回收率70.30%。金品位3.7g/t,回收率33.5%,尾矿即为硫精矿的较佳指标。铜和金回收率分别比现生产工艺提高10%和11%。  相似文献   

19.
巫旭  王少龙  雷霆  包崇军  胡鑫 《矿冶》2014,23(5):61-64
湿法炼锌过程中,产出一定量的铜渣,对铜渣进行合理利用,将产生一定的经济效益和环保效益。探讨了时间、温度、氧气浓度、液固比、搅拌速度和浸出原液硫酸浓度对铜渣浸出的影响,得出了适宜的浸出条件,铜浸出率可达92%以上。浸出液采用蒸发浓缩—热过滤—再蒸发浓缩—冷却结晶的工艺,结晶通过4次热水逆流洗涤后,达到工业一级五水硫酸铜产品质量的要求。浸出和结晶流程铜的总收率为86.9%。  相似文献   

20.
汪泰  叶小璐 《矿冶工程》2017,37(1):39-41
对国内某艾萨炉铜冶炼渣进行了回收铜和银的浮选试验研究。综合回收该铜渣中铜银的前提是:使铜与铁橄榄石、铅铁玻璃等脉石矿物充分解离; 清洁、活化被脉石矿物污染的铜矿物表面; 选择高效捕收剂回收密度大、粒度粗的金属铜。基于此, 确定磨矿细度-0.074 mm粒级占93%, 在球磨机中添加调整剂碳酸钠, 并以GD-3为捕收剂, 通过一粗三精二扫闭路浮选工艺, 获得了铜精矿铜品位29.55%、银品位146.30 g/t, 铜回收率90.99%、银回收率83.48%的技术指标, 为该铜渣的资源化利用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号