首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
目的 探究高温合金调压铸造的充型凝固过程,研究调压铸造工艺对铸件组织缺陷和力学性能的影响规律,并验证数值模拟对实际生产指导的可靠性。方法 以某精密构件为研究对象,借助ProCAST数值模拟软件模拟了铸件的调压铸造充型凝固过程并对组织缺陷的形成进行了预测。对成形铸件的特征关键部位进行了取样,通过金相显微镜和扫描电子显微镜对铸态试样的微观组织进行了观察,借助准静态万能拉伸试验机测试了特征试样的室温和高温(750 ℃)拉伸性能,并对断口形貌进行了观察和分析。结果 数值模拟结果表明,金属液充型平稳,凝固过程基本符合自上而下的顺序凝固,铸件缺陷较少,缩孔体积分数仅为0.22%。实验结果表明,铸件的铸态组织为典型的树枝晶组织,晶粒尺寸细小均匀;二次枝晶间距较小,组织致密,缩松缩孔缺陷较少,这与数值模拟的结果吻合较好;铸件的平均抗拉强度超过900 MPa,最大伸长率为15%,该铸件具备较好的综合力学性能。结论 通过数值模拟方法指导铸造生产具有一定的可靠性,同时,通过调压铸造工艺可以生产出具有较好组织和力学性能的高温合金薄壁铸件。  相似文献   

2.
为了解半固态压铸过程中浆料充型规律及其流动特点,本文采用AnyCasting铸造仿真软件特有的半固态触变功能模块(Bingham粘度模型)对半固态ZL201铝合金的触变充型过程进行数值模拟,研究慢、快压射速度及切换时间对半固态触变压铸充型过程的影响,对最优充型条件下的铸件微观组织及力学性能进行模拟研究,并进行试验对比.数值模拟结果显示,ZL201合金半固态触变压铸成形在浆料温度600 ℃、模具温度240 ℃时、低速压射速度0.1 m/s、且在1.5 s后进行速度切换、高速压射速度为1 m/s时,所得铸件维氏硬度最大可达72HV,平均抗拉强度为208 MPa.按照该工艺条件成型的成形件显微组织致密,测得其平均抗拉强度为212.5 MPa、平均硬度值为70.8HV, 性能较高,与模拟结果符合较好.  相似文献   

3.
目的 对某铝合金汽车转向节的精密铸造工艺进行设计与优化研究,以得到合格的铝合金汽车转向节的精密铸造工艺方案。方法 结合铝合金转向节铸件的结构特征、铸件材料特性和铸造经验,在转向节铸件主体部和鹅颈部各开设一个内浇口,设计了铝合金转向节初始浇注方案;通过在初始工艺方案中铸件缺陷较严重的区域设置补缩冒口、在铸件顶部增设排气道等措施给出了铝合金汽车转向节的优化浇注方案,基于ProCAST软件建立了铝合金转向节精密铸造2种浇注方案的有限元模型,对铝合金转向节精密铸造的充型过程、凝固过程及缩孔缩松特性进行了数值模拟与分析。结果 铝合金转向节铸件初始浇注方案的充型过程相对稳定流畅,铸件在凝固过程中有孤立液相区的形成,完全凝固后铸件中间部位存在大面积缩松缩孔缺陷;优化浇注方案能够控制金属液的流动、充型顺序及凝固特性,铸件的整个凝固过程基本呈中间对称分布,最后凝固区域位于补缩冒口内部,最大缩孔缩松率控制在2%以下。结论 优化浇注方案的设计合理且有效,能够有效地消除铝合金转向节铸件的缺陷。  相似文献   

4.
运用铸造模拟软件Procast对一模四腔的A356铝合金压铸零件进行数值模拟,分析铸件的充型凝固过程,预测缺陷。结果显示:在压射速度为2.5m/s,浇注温度为650℃,模具温度为240℃的条件下四腔同时充填,充型平稳,排气良好,得到充型完整、无缩松缩孔、气孔倾向小的铸件。  相似文献   

5.
目的 基于ProCAST,建立钛合金铸件铸造变形的模拟预测方法。方法 以某板状钛合金铸件为例,模拟了充型凝固、型壳内冷却和脱壳后冷却3个过程,并分别对各过程进行了相应假设和参数设置。为验证模拟结果,根据模拟模型设计了浇注验证实验。结果 铸件中间部位向外侧凸起,加强筋部位向内侧凹陷,和实验结果基本一致,变形量预测吻合度在60%~72%之间。结论 通过合理设置模拟流程和材料参数模型,数值模拟可以预测钛合金铸件的变形规律,并为变形量预测提供重要参考。  相似文献   

6.
基于UG平台设计了铝合金壳体压铸件的浇注系统和排溢系统,并运用铸造模拟软件Anycasting进行了数值模拟。通过分析铸件的充型及凝固过程,判断设计的合理性。模拟结果表明,在压射速度为2m/s,浇注温度为670℃,模具预热温度为180℃的条件下,铸件充型平稳,无明显缺陷。  相似文献   

7.
充型过程的数值模拟技术   总被引:1,自引:0,他引:1  
张舒娟  侯华  杨晶  毛红奎 《材料导报》2007,21(3):104-107
铸造充型过程的数值模拟技术是铸造领域的前沿技术.采用这些技术进行充型过程的数值模拟可以帮助人们更清楚地了解充型过程中金属液流动的自由表面和速度分布.介绍了充型过程数值模拟的发展过程、数学模型,探讨了充型过程的计算方法以及自由表面的处理,并指出了当前研究中存在的问题.  相似文献   

8.
目的 揭示铸件结构特征及型壳固液比差异对铸件充型率、收缩率和内部缺陷倾向性的影响。方法 分别采用3种不同型壳固液比的型壳,通过重力浇注制备了Ti?48Al?2Cr?2Nb合金特征结构元件铸件,对具有不同尺寸参数的板、变截面、尖角、筋、过渡弧、孔、环、曲面等8种典型特征结构元件铸件的充型率、收缩率、缩松/气孔的数量与分布、截面缩松率等铸造成形特性进行研究。结果 板厚度≥6 mm、变截面厚度变化率≥0.075、尖角≥90°时可基本充型完整;铸件收缩率在1.8%~3.3%之间;在不同特征结构中,变截面的平均截面缩松率最低为0.012%~0.018%,尖角最高为0.21%~0.46%;型壳固液比为1.8∶1和2∶1的铸件气孔分布面积仅为2.4∶1时的10%~80%。结论 充型高度随铸件厚度和角度增大而提高;特征结构与尺寸参数对收缩率影响较小;铸件的壁厚、厚度变化率、角度和孔径等因素均会对缩松的数量与分布产生影响;型壳固液比为1.8∶1和2∶1的铸件气孔分布面积比普遍低于2.4∶1的铸件。相关结果为钛铝合金复杂构件结构设计优化和精铸成型工艺优化的共性技术发展提供了支撑。  相似文献   

9.
不锈钢叶轮的形状复杂且壁薄,使熔模铸造不锈钢叶轮铸件出现缩孔缩松及浇不足等缺陷。这些缺陷与铸件的充型和凝固过程密切相关。本文使用ProCast软件数值模拟研究叶轮的充型及凝固过程,并将结果与实验进行了比较。结果表明:浇注温度为1550℃、浇注速度为0.75 m/s有利于叶轮铸件的充填,可避免浇不足缺陷。适当的铸造温度和铸造速度仍无法避免在叶轮铸件内产生缩孔缩松缺陷。根据叶轮铸件的结构特点,采用在叶轮铸件中空处施加冷铁的方式可以消除铸件中的缩孔缩松缺陷,当冷铁高度为叶轮铸件内部高度的1/3时,去除缩松缩孔缺陷的效果最明显。  相似文献   

10.
刘铁  张文金 《硅谷》2015,(2):44-45
低压铸造作为一种生产效率、能源利用率更高的铸工艺对于铸造领域特别是汽车生产制造中具有显著的优势,为了进一步改进这一工艺的应用,文中对汽车排气管采用了这一技术进行设计,主要完成了以下研究内容:对排气管的低压铸造浇注工艺进行了设计计算,确定了工艺的充型速度、充型压力、增压和增压速度、结壳时间等参数;在对设计铸件进行有限元模拟中发现铸件有缩松缺陷,采用用低压模式实现了内浇口改进。工艺设计结果表明:低压铸造的排气管的铸件机械性能得到改善,表面粗糙度符合要求且尺寸较准确,底注式充型同传统的比重型铸造,产品合格率得到提高。这一研究对于低压铸造工艺在汽车领域进一步推广具有一定的借鉴价值。  相似文献   

11.
The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied.A mathematical model considering the turbulent flow and heat transfer phenomenon during the HPDC process has been established and paralled computation technique was used for the mold filling simulation of the process.The laminar flow characteristics of the LPDC process were studied and a simplified model for the mold filling process of wheel castings has been developed.For the solidification simulation under pressure conditions,the cyclic characteristics and the complicated boundary conditions were considered and techniques to improve the computational efficiency are discussed.A new criterion for predicting shrinkage porosity of Al alloy under low pressure condition has been developed in the solidification simulation process.  相似文献   

12.
差压铸造薄壁铝硅合金铸件的位置效应   总被引:1,自引:0,他引:1  
采用差压铸造工艺,研究垂直缝隙式浇注系统浇注的铝合金硅铸件不同位置的组织和力学性能变化.采用石英砂型、SiC砂型和冷铁,浇口处铸件的晶粒最细小,致密度高、力学性能最好;铸件冷端的组织和性能次之;位于两者之间的铸件的组织和性能最差.分析表明对于具有垂直缝隙式浇注系统,差压铸造凝固压力对金属的凝固作用具有位置效应,浇口处液态金属温度高,凝固时间长,凝固压力对浇口处金属的凝固作用显著;铸件冷端金属凝固时间短,凝固压力对该处金属的凝固作用不显著,铸型的冷却速度对铸件组织和性能的影响起显著作用.浇口处与冷端之间的金属液体的凝固受压力和冷却速度的影响小,铸件的晶粒尺寸最大、密度最小、性能最低.冷却速度提高,铸件的任意位置的组织和性能都相应得到提高.  相似文献   

13.
An interactive computer simulation system has been developed in this study to aid the determination of the pressure–time relationship during the filling of a low pressure casting to eliminate filling-related defects while maintaining its productivity. The pressure required to fill a casting in a low pressure casting process can be separated into two stages. The first stage is to exer pressure to force the molten metal to rise in the riser tube up to the gate of the casting die, whichvaries from casting to casting due to the drop of the level of the molten metal in the furnace, whilst the second stage is to add an additional pressure to push the molten metal into the die cavity in away that will not cause much turbulence and have the proper illing pattern to avoid the entrapment ofgas while maintaining productivity.

One of the major efforts in this study is to modify the filling simulation system with the capability to directly predict the occurrence of gas porosity developed earlier to interactively determine the proper gate velocity for each and every part of the casting. The pressure required to ill the die cavity can then be obtained from the simulations.

The operation principles and the interactive analysis system developed are then tested on an automotive wheel made by the low pressure casting process to demonstrate how the system can aid in determining the proper pressure–time relations, the p–t curve, required to produce a sound casting without sacrificing productivity.  相似文献   

14.
利用数值模拟方法,研究了重力场和立式离心场下,不同浇注系统(顶-底、螺旋、径向和树形系统)Ti-3Al-2.5V钛合金铸件的充型和凝固过程及缩孔缺陷分布规律,并通过实际铸造实验,对铸件的机械性能及缩孔缺陷进行了检测。结果表明,重力场下的顶-底浇注系统氧含量波动范围大,不同浇注系统对合金力学性能影响不大,缩孔的模拟结果与实际铸造情况都吻合较好。相比而言,重力场下由于金属液的紊流更容易形成夹杂、钛豆、缩孔等缺陷,而离心场下由于离心力的作用,形成缩孔等缺陷的数量相对较少。  相似文献   

15.
目的 研究不同浇冒口设置对TiAl低压涡轮叶片的成形的影响及叶片冶金缺陷形成的原因。方法 采用熔模精铸方法,通过设计顶注式重力铸造浇注系统,采用冷坩埚感应熔炼炉进行TiAl叶片浇注实验,采用目视和X射线检验方法分析叶片铸件表面及内部缺陷,并结合金属凝固理论分析缺陷形成原因。结果 合理的浇口和排气孔设置有效避免了因熔体流动性差造成的叶片充型不完整,以及凝固收缩导致的应力开裂等问题,浇注出成形完整的铸造叶片;叶冠与叶身端部转角部位充型凝固过程中形成热节,容易出现贯穿性疏松缺陷;树脂基熔模焙烧后残留的碳黑在熔体充型凝固过程中,与面层中的ZrO2反应生产CO,导致叶身出现聚集性皮下气孔;由于凝固收缩引起叶身与铸型分离,降低横向散热能力,导致叶盆部位出现表面疏松。结论 通过浇注合理的浇注系统设置可实现TiAl叶片完整充型,疏松缺陷控制为进一步提高叶片质量的关键。  相似文献   

16.
Mold-filling process of thin-walled castings under the condition of traveling magnetic field has been studied by physical simulation method using gallium melt and fast speed photography. Flow morphology and its formation mechanism were obtained and discussed for thin-walled casting. The influences of magnetic field density on the filling ability, filling velocity and mold filling time have been studied. The differences in filling capability between gravity casting and casting under the traveling magnetic field have been compared. The results indicate that the mold filling ability of the gallium melt increases greatly under the condition of traveling magnetic field; the filling time is shortened from 18 s under gravity field to 3 s under the traveling magnetic field and average flow rate of the melt increases from 1.6 to 8.68 cm3/s; the change law of the cross-section morphology of the gallium melt during the mold filling is that at first, the cross-section area does not change, then it decreases gradual  相似文献   

17.
Ti-6Al-4V熔模精密铸造充型及凝固过程计算机模拟   总被引:3,自引:0,他引:3  
应用自行开发的基于微机上运行的铸件凝固 /充型计算机模拟软件 ,对Ti-6Al-4V钛合金薄壁件精密铸造的充型及凝固传热过程进行了模拟分析 .应用自行安装的多通道钨铼热电耦温度数据计算机采集、分析系统 ,测定了该钛合金起吊接头精密铸件的凝固冷却曲线 ,获取了该合金有关的凝固参数 .对包括上述零件在内的钛合金薄壁件精密铸造的充型过程及凝固传热的温度分布进行了数值模拟 ,模拟计算与实测结果合理吻合 .基于该研究可对其精密铸造工艺进行优化设计 .  相似文献   

18.
随着计算方法和铸造工艺的发展,数值模拟技术在铸造领域中得到了广泛应用.涡轮作为发动机上的重要热端部件,其结构伴随着发动机的更新换代,向着精密化、轻量化、薄壁化方向发展,数值模拟技术也成为铸造工作者控制涡轮质量的重要手段.目前相关学者通过铸造模拟软件对涡轮精密成形的充型过程与宏观物理场结果进行分析,依据模拟结果来改善铸造...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号