首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于单V锥节流装置的湿气气液流量在线测量   总被引:1,自引:0,他引:1  
提出采用两相质量流量系数对V锥节流装置湿气测量误差进行修正,试验研究洛克哈特-马蒂内利参数、气体密度弗鲁德数以及气液密度比对V锥节流装置两相质量流量系数的影响规律。V锥节流装置的节流比为0.55,试验介质为压缩空气和水,气液密度比为0.002 445~0.006 083,气体密度弗鲁德数为0.3~2.0,洛克哈特-马蒂内利参数为0.01~0.34。结果表明,两相流量系数随洛克哈特-马蒂内利参数增加而线性增大,同时还受气体密度弗鲁德数和气液密度比的影响。获得了两相质量流量系数与洛克哈特-马蒂内利参数、气体密度弗鲁德数和气液密度比的定量关系,建立湿气流量测量的半经验关联式。利用V锥节流装置前后锥体对湿气具有不同的差压响应特性,获得了其差异性的影响规律,建立单节流元件双差压的湿气气液流量双参数测量方程。在试验范围内,测得的气相质量流量相对误差小于±5.0%,平均误差为2.2%;液相质量流量相对误差小于±20.0%,平均误差为9.8%。该方法具有系统简单、成本低廉、精度较高的特点。  相似文献   

2.
The use of Coriolis mass flow metering for two-phase (gas/liquid) flow is an emerging theme of both academic research and industrial application. The key issues are maintaining flow-tube operation, and modelling and correcting for the errors induced in the mass flow and density measurements. Experimentally-derived data is used to illustrate that these errors vary most notably with gas void fraction (GVF) and liquid flow rate, but other factors such as flow-tube geometry and orientation, and fluid properties such as viscosity are also influential. While undoubtedly a universal two-phase flow correction model is the ultimate research goal, there is currently no obvious candidate to explain the range of behaviours observed. This paper describes and demonstrates an empirical methodology that has proven effective in developing good correction models for a given choice of Coriolis flow-tube and flow mixture.

A growing proportion of the world’s oil reserves may be described as “heavy”, implying high density and high viscosity. Of the various metering challenges heavy oil poses, one of the most significant is its ready entrainment of gas, and the difficulties entailed in separating gas from the oil. Accurate two-phase measurement of heavy oil is therefore an especially desirable technical goal.

Trials were carried out at the National Engineering Laboratory (NEL), Scotland on a 75 mm flowmeter using a high viscosity oil. Flowrates from 1 kg/s to 10 kg/s were examined, with gas void fraction (GVF) up to 80%. The resulting models were tested online in a commercial Coriolis mass flow meter and demonstrated good performance for both steady and slugging two-phase flows, with the corrected measurements typically within 1%–5% of the nominal mass flow and density.

Field trials in Venezuela have confirmed the performance of this two-phase solution.

While research continues into the development of a generic two-phase correction, this case study demonstrates that the current state of the art can provide, for economically important fluids, tailored models with good two-phase flow performance.  相似文献   


3.
The void fraction is one of the most important parameters used to characterize gas–liquid two-phase flow, and a myriad of researchers have investigated it under the adiabatic flow conditions. The gamma ray attenuation is a frequently used non-intrusive method for measuring component volume fraction in gas–liquid two-phase flow system. In this paper, firstly, the influence of the various parameters and test conditions on the gamma ray attenuation have been completely examined, such as the calibration of Count Rate for pure gas and liquid phases, the influences of fluid temperature, phase changing point and fluid mass velocity, distance between gamma ray attenuation measuring instrument and experimental section etc. Secondly, the measurement of void fraction was taken in the vertically upward pipes under high pressure and high temperature evaporating conditions. The experimental results of void fraction were compared with the data in reference literature for measurement, the results from the gamma ray attenuation show good agreement with the literature for air–water two-phase flows, but for the evaporating conditions, a small number of compared data beyond the statistical approach for 90% of confidence interval due to some reasons, such as heat flux, the diameter of Taylor-bubbles, longitude of slugs etc. Finally, six predicted correlations from four groups were selected for comparing with the experimental data. The most of compared data were within the statistical approach for 85% of confidence interval. In general, the void fraction was rarely investigated and the available data was limited under high temperature and high pressure evaporating conditions. The investigations of present study are helpful to resolve the difficulties of measuring for gas–liquid two-phase flows concerning to the heated evaporating condition.  相似文献   

4.
The mechanism of differential pressure noise of orifices in two-phase flow has been investigated and a theoretical model has been developed for measurement of the double parameters, i.e. mass flow rate as well as phase fraction (steam quality). The model has been proved in a set of orifice experiments in a two-phase flow system at a pressure range of 5.8–12.1 MPa and steam quality of 0.05–0.95, and a practical model has been fitted. The r.m.s. errors of mass flow rate and steam quality estimated by the model are 9.0 and 6.5%, respectively. The results of the studies create a method to measure double parameters of two-phase flow at once using only a single orifice.  相似文献   

5.
Two-phase flows are complex and unpredictable in nature, commonly encountered in a majority of fluid transport systems. The accurate measurement of two-phase flow is critical for a wide range of applications from wet stream to multiphase flows. There are different methods to meter two-phase flow in various industries. One approach is to produce a flow meter that does not require the individual flow components to be separated and measured separately. This goal can be met if a homogenized mixture is produced which can be measured by a standard single phase flow meter. The slotted orifice plate was invented as a flow meter for single phase flows, it is independent upon upstream flow conditions. Slotted orifice plate flow meter's utilization in two-phase flow revealed that it is highly capable of working as a flow conditioner transforming most of the multiphase flow regimes into a fairly uniform mixture. This study measures how the relative homogeneity of an air/water mixture varies downstream of the slotted plate in a horizontal pipe for various upstream conditions including elongated bubble and slug flow regimes using electrical resistance tomography (ERT). According to this study, the optimal location with a maximum homogeneity was determined to be between 1.5 and 2.5 pipe diameters downstream of the slotted orifice plate. This indicates that placing a slotted orifice plate at the obtained distance upstream of another flow meter such as a venturi coupled with a density measuring device like a radiation based densitometer or an electrical impedance device will help in obtaining accurate multiphase flow rate measurement.  相似文献   

6.
The online continuous measurement of multiphase flow is one of the most key technologies which influences the development of oil industry in future. A new type of multiphase meter system is developed based on the open channel flow. The test pipe of the meter is slightly slopped to make the flow pattern mainly stratified flow. Based on the study of oil and gas flow dynamics in the open channel test pipe, the liquid metering model and gas metering model are deduced to calculate the gas and the liquid flow rate, the water cut is measured online by the principle of differential pressure. This device can work online without the separation of the production fluid. By the lab test and field application test, the results of the metering system show that the liquid flow rate errors are within ±5%, the gas flow rate errors can be within ±5%, and the water cut absolute error is within ±2%, which can meet the demands of the field flow rate measurement.  相似文献   

7.
以空气-水为介质,对科氏流量计应用于气液两相流双参数测量进行了实验研究.实验过程中保持液相流量一定,通过加入不同体积分数的空气来分析含气率对科氏流量计测量精度的影响,采用Weisman垂直上升管气液两相流流型图与实验数据进行了比较.结合实验结果,初步归纳出含气量、流型和科氏流量计测量精度之间的关系,总结出液相中含气影响科氏流量计测量精度的主要因素及其影响规律,为进一步研究科氏流量计气液两相流测量误差修正提供了一种技术方法.  相似文献   

8.
电磁流量测量在工业生产过程中扮演着重要角色,但易受流体中气泡的影响导致测量结果出现波动进而影响测量精度,因此通过技术手段实现测量精度的优化十分关键。针对电磁流量测量精度受气泡影响的测量优化问题,本文首先从权重函数角度入手,建立了气泡对电磁流量测量影响的理论模型;其次,通过有限元仿真研究了气泡对权重函数的影响,并根据仿真结果提出了一种基于图像采集与处理技术的优化方法降低气泡对电磁流量测量的影响;最后,为了验证优化方法的可行性,开发了气泡图像处理算法,并搭建气液两相流流体电磁流量测量实验平台进行实验验证。实验结果表明,采用优化方法补偿后的电磁流量测量系统受气泡影响的敏感程度得到有效降低,误差降低幅度均在82.63%以上,最大误差降低幅度可达91%,优化后气泡存在时的测量误差在±3.03%以内。研究有效降低了电磁流量测量受气泡影响产生的误差,为进一步提高气泡影响下的电磁流量测量精度和实现气液两相流电磁测量提供技术支持。  相似文献   

9.
The mass air flow meter is a critical sensor that works based on thermal hot wire technology, used to determine the fuel to be injected into the cylinder and calculate the fuel-air ratio. In order to measure the airflow rate accurately, the flow should be uniform and smooth upstream of the sensor. The flow disturbance with a short straight length upstream of the flow meter results in the noise of the sensor signal. This noise causes unstable mass flow measurement on the system. Flow conditioners can be used to smooth the velocity profile of the flow. In this study, experimental and numerical methods were used to characterize the performance and operating accuracy of the mass flow meter used in heavy-duty truck applications. The flow conditioners were implemented to smooth the velocity profile around the mass flow meter that was disrupted by bends. The flow structures with and without flow conditioner were examined using Particle Image Velocimetry (PIV) to measure the time-averaged velocity. As well as the validated computational fluid dynamics (CFD) model provides data to understand the flow uniformity effect of the conditioner on the mass airflow (MAF) sensor. The optimization study was performed using a full factorial design of experiment (DOE) for flow conditioner design. A robust methodology was developed for the flow conditioner characteristics and mass airflow sensor implementation on the air induction system.  相似文献   

10.
Parameter measurement of gas–liquid two-phase flows with a high gas volume fraction (GVF) has received great attention in the research field of multiphase flow. The cone meter, as a new proposed differential pressure (DP) meter, is increasingly being applied in flowrate measurement of gas–liquid two-phase flow. A dual-parameter measurement method of gas–liquid two-phase flow based on a dual-cone meter is proposed. The two-phase flow is investigated in a horizontal pipeline with high GVF and low pressure, and exists in the form of annular flow. By adding a second cone meter, both gas mass fraction (GMF) and mass flowrate are measured. The pressure drop performances of five different sized cones have been discussed to make a cooperating cone selection and efficiently position the dual-cone in the pipe. Dual-cone flowmeter experiments of 0.45 and 0.65 equivalent diameter ratio combination, and 0.65 and 0.85 equivalent diameter ratio combination are respectively carried out to analyze the linearity of two-phase flow multiplier with Lockhart–Martinelli parameter and obtain the dual-parameter measurement results. The relative experiment error of GMF, gas mass flowrate and total mass flowrate are respectively within ±7%, ±5% and ±10%. The relative error of the liquid phase is within ±10% when the liquid mass fraction is beyond 40%. The experimental results show that it is efficient to utilize this dual-cone method for high GVF and low pressure gas–liquid two-phase flow measurement.  相似文献   

11.
基于槽式孔板的凝析天然气计量技术   总被引:1,自引:0,他引:1  
介绍了一种新型气液两相流量传感器——槽式孔板的结构特点和工作原理,并将其应用于凝析天然气计量技术研究。结合实验数据和理论模型详细分析了影响槽式孔板两相压降倍率的各种因素,利用曲面拟合技术给出了传感器两相压降倍率与压力、气体富劳德准数、Lockhart-Martinelli参数之间的相关式,该相关式计算精度可以满足生产计量的精度要求,为低含液率的凝析天然气流量计研制奠定了基础。  相似文献   

12.
In the last decade significant progress has been achieved in the development of measurement traceability for LNG inline metering technologies such as Coriolis and ultrasonic flow meters. In 2019, the world's first LNG research and calibration facility has been realised thus enabling calibration and performance testing of small and mid-scale LNG flow meters under realistic cryogenic conditions at a maximum flow rate of 200 m3/h and provisional mass flow measurement uncertainty of 0.30% (k = 2) using liquid nitrogen as the calibration fluid. This facility enabled, for the first time, an extensive test programme of LNG flow meters under cryogenic conditions to be carried out to achieve three main objectives; the first is to reduce the onsite flow measurement uncertainty for small and mid-scale LNG applications to meet a target measurement uncertainty of 0.50% (k = 2), the second is to systematically assess the impact of upstream flow disturbances and meter insulation on meter performance and the third is to assess transferability of meter calibrations with water at ambient conditions to cryogenic conditions. SI-traceable flow calibration results from testing six LNG flow meters (four Coriolis and two ultrasonic, see acknowledgment section) with water in a water calibration facility and liquid nitrogen (LIN) in the LNG research and calibration facility under various test conditions are fully described in this paper. Water and LIN calibration data were compared and it was observed that the influence of removing the meter insulation on mass flow rate measurement accuracy can be more significant (meter error > ±0.50%) than the influence of many typical upstream disturbances when the meter is preceded by a straight piping length equal to twenty pipe diameters (20D) with no additional flow conditioning devices, in particular for ultrasonic meters. The results indicate that the correction models used to transfer the water calibration to cryogenic conditions (using LIN) can potentially result in mass flow rate measurement errors below ±0.5%, however, the correction models are specific to the meter type and manufacturer. This work shows that the target measurement uncertainty of 0.50% can be achieved if the expanded standard error of the mean value measured by the meter is smaller than 0.40% (k = 2). It is planned to repeat these tests with LNG in order to compare the results with the LIN tests presented in this paper. This may reveal that testing with an explosion safe and environmentally friendly fluid such as LIN produces representative results for testing LNG flow meters.  相似文献   

13.
The thermal gas mass flow meter is an important meter used in industrial measurement. When the environmental temperature changes, the measured gas physical parameters change correspondingly and the thermal gas mass flow meter output signal is affected, causing large measurement error. The influence of gas temperature on the sheathed probe measurements is analyzed in this paper based on experiments and heat transfer theory using a three dimensional probe and gas heat transfer mathematical model based on the heat conduction equation. The probe heat transfer process is analyzed under convection heat transfer coupling conditions. The experimental data were analyzed and compared against the theoretical results, with a maximum average relative error of only 4.56%. The rationality of the theoretical method is thus verified.  相似文献   

14.
Oil-in-water two-phase flows are often encountered in the upstream petroleum industry. The measurement of phase flow rates is of particular importance for managing oil production and water disposal and/or water reinjection. The complexity of oil-in-water flow structures creates a challenge to flow measurement. This paper proposes a new method of two-phase flow metering, which is based on the use of dual-modality system and multidimensional data fusion. The Electrical Resistance Tomography system (ERT) is used in combination with a commercial off-the-shelf Electromagnetic Flow meter (EMF) to measure the volumetric flow rate of each constituent phase. The water flow rate is determined from the EMF with an input of the mean oil-fraction measured by the ERT. The dispersed oil-phase flow rate is determined from the mean oil-fraction and the mean oil velocity measured by the ERT cross-correlation velocity profiling. Experiments were carried out on a vertical upward oil-in-water pipe flow, 50 mm inner-diameter test section, at different total liquid flow rates covering the range of 8–16 m3/hr. The oil and water flow rate measurements obtained from the ERT and the EMF are compared to their respective references. The accuracy of these measurements is discussed and the capability of the measurement system is assessed.  相似文献   

15.
In many fluid flow applications, mass flow rate is preferred over volume flow rate, as it is more beneficial in terms of cost and material balance calculations. Coriolis mass flow meter (CMFM) is accepted widely for mass flow measurement owing to its accuracy and reliability. However, it has been found to under-read the mass flow rate in laminar flow region [1], thus limiting its application in this region. The secondary flow in the curved tube section influences the generated Coriolis force and leads to a deviation in meter readings. Commercial CMFMs are available with various curved tube configurations and need to be analyzed for their application in laminar region. This paper presents comprehensive experimental and numerical investigations performed to evaluate the influence of tube configuration and other meter parameters, such as drive frequency, amplitude of vibration, and sensor position, on the performance of the CMFM in laminar region. The findings of this study have put forth a suitable combination of tube configuration, drive frequency, and sensor position while using the CMFM in laminar flow regime.  相似文献   

16.
Wet gas flow is a subset of gas–liquid two-phase flow, and wet gas metering is gaining considerable attention due to its importance in the nuclear, oil and gas industry. Wet gas meter based on slotted orifice and swirlmeter combination in series was designed and investigated. A wet gas measurement model with the simultaneous equations from the two flowmeters' correlations has been established, and then an iterative solution algorithm is given. The novel proposed approach predicts the gas mass flow rate relative errors within ±6% from 89.2% tested samples, and the gas mass flow rate relative errors within ±20% from all tested samples, which is accepted for many wet gas applications. Therefore, it implies that the proposed wet gas metering technique may be used to meter both gas and liquid flow rates for wet gas flow at the Lockhart Martinelli parameter X≤0.12.  相似文献   

17.
基于两相流体网络的复杂制冷空调系统模型研究   总被引:2,自引:0,他引:2  
以系统论和相似理论为基础,建立了基于两相流体网络的复杂制冷空调系统仿真模型,并将两相流体网络特性与制冷系统特性相结合,建立了复杂制冷空调系统仿真模型的求解方法。与试验结果比较表明,仿真算法可以用来求解制冷系统两相流体网络模型,且仿真误差很小,可以用来对复杂制冷系统进行性能分析,为研究复杂制冷系统与两相流体网络提供了一种有效的工具。  相似文献   

18.
Previous work has described the use of Coriolis mass flow metering for two-phase (gas/liquid) flow. As the Coriolis meter provides both mass flow and density measurements, it is possible to resolve the mass flows of the gas and liquid in a two-phase mixture if their respective densities are known. To apply Coriolis metering to a three-phase (oil/water/gas) mixture, an additional measurement is required. In the work described in this paper, a water cut meter is used to indicate what proportion of the liquid flow is water. This provides sufficient information to calculate the mass flows of the water, oil and gas components. This paper is believed to be the first to detail an implementation of three-phase flow metering using Coriolis technology where phase separation is not applied.Trials have taken place at the UK National Flow Standards Laboratory three-phase facility, on a commercial three-phase meter based on the Coriolis meter/ water cut measurement principle. For the 50 mm metering system, the total liquid flow rate ranged from 2.4 kg/s up to 11 kg/s, the water cut ranged from 0% to 100%, and the gas volume fraction (GVF) from 0 to 50%. In a formally observed trial, 75 test points were taken at a temperature of approximately 40 °C and with a skid inlet pressure of approximately 350 kPa. Over 95% of the test results fell within the desired specification, defined as follows: the total (oil+water) liquid mass flow error should fall within ±2.5%, and the gas mass flow error within ±5.0%. The oil mass flow error limit is ±6.0% for water cuts less than 70%, while for water cuts between 70% and 95% the oil mass flow error limit is ±15.0%.These results demonstrate the potential for using Coriolis mass flow metering combined with water cut metering for three-phase (oil/water/gas) measurement.  相似文献   

19.
薛婷  周策  李卓林 《光学精密工程》2017,25(12):3145-3151
以气液两相环状流管道横截面的周向液膜为测量对象,采用单台高速摄像机和平面反射镜组构建了虚拟双视角的视觉传感器,并对传感器进行了优化。基于虚拟双目立体视觉原理建立虚拟双视角视觉传感器测量模型。为了尽可能增大有效拍摄视角以获得更多液膜流动信息,综合考虑视场区域、传感器尺寸、测量距离以及管道光路折射等因素,对虚拟双视角视觉传感器模型进行了分析和设计,优化了传感器模型的结构参数。理论分析及实验结果表明:优化后的虚拟双视角视觉传感器可以获得近300°的有效周向测量视角,远远优于使用单台高速摄像机进行直接拍摄。该项研究为通过双视角视觉传感器进行气液两相环状流周向液膜的实时测量提供了理论基础,对研究液膜厚度和分析环状流流动状态具有重要意义。  相似文献   

20.
A method for air–water two-phase flow measurement is proposed using a Venturi meter combined with an Electrical Resistance Tomography (ERT) sensor. Firstly, the real-time flow pattern of the two-phase flow is identified using the ERT sensor. Secondly, the void fraction of the two-phase flow is calculated from the conductance values through a void fraction measurement model, developed using the LS-SVM regression method. Thirdly, the mass quality is determined from the void fraction through void fraction-quality correlation. And finally, the mass flowrate of the two-phase flow is calculated from the mass quality and the differential pressure across the Venturi meter. Experimental results demonstrate that the proposed method is effective for the measurement of the mass flowrate of air–water flow. The proposed method introduces the flow pattern information in the measurement process, which minimizes the influence of flow pattern on the conventional differential pressure based methods. In addition, the mass quality is calculated from the void fraction, so the difficulty to obtain the mass quality in conventional methods is also overcome. Meanwhile, the new method is capable for providing concurrent measurements of multiple parameters of the two-phase flow including void fraction, mass quality and mass flowrate as well as an indication of the flow pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号