共查询到17条相似文献,搜索用时 62 毫秒
1.
集流盘作为新能源汽车电池的重要组成部件,其质量好坏关系到电池的性能,对车内人员的生命安全有着重要影响。实际工业应用中,在有限的计算资源下对电池集流盘缺陷进行实时检测是一项具有挑战性的任务。为了减小模型大小和计算量,降低应用成本,本文提出一种轻量化的新能源汽车电池集流盘缺陷检测模型(SGCNet)。首先,采用ShuffleNet V2作为主干特征提取网络,采用分组卷积和通道重排技术,在提取有效特征的同时降低计算复杂度,降低参数量。其次,设计了轻量化的特征融合网络GC-FPN,采用轻量级GhostNet和CARAFE上采样算子,在减少参数冗余和保证检测精度的情况下充分保留特征图的语义信息,从而降低了计算成本。实验结果表明,SGCNet模型检测准确率达到了90.6%,模型大小为3.2 M,GFLOPs仅为3.6,帧率达到了178.6 fps。与目前先进的轻量化网络模型相比,具有较高检测精度和较低的计算量。最后,在嵌入式平台NVIDIA Jetson Nano上部署SGCNet模型,进行实时检测,每张图片的检测时间为0.07 s,满足实际工业中电池集流盘缺陷检测任务对精度和实时性的要求。 相似文献
2.
针对芯片缺陷检测中,缺陷尺寸跨度大、特征相似、小目标难识别、漏检等问题,本文提出基于YOLOv5改进的缺陷检测方法。针对小目标缺陷检测中出现的漏检、误检等问题,提出新增小目标特征检测器(small target feature detector,S-Detector),提升模型对小目标缺陷的学习能力;针对缺陷尺寸跨度大、特征相似等问题,提出具有高效聚焦学习能力的特征金字塔结构(efficient attention feature pyramid networks,EA-FPNs),提升模型对不同尺寸缺陷的检测能力;针对预测阶段冗余框较多导致时间开销大的问题,提出基于面积的边界框融合算法(bounding box fusion algorithm,BFA),减少冗余框。实验结果表明,本文方法相较于改进前,检测精确度提升1.2%,小目标缺陷精确度提升1.6%;采用BFA消除冗余框的同时,平均检测时长为26.8μs/张,较使用BFA前减少了5.2μs。本文所提方法具有良好性能,能够提升检测效率。 相似文献
3.
为了实现路面缺陷的智能快速化检测,对深度学习目标检测算法YOLOv5进行改进,得到的3种检测模型(YOLOv5-A,YOLOv5-C,YOLOv5-AC)均可采用视频检测的方式对路面5类缺陷进行快速检测。采用智能手机和数码相机采集路面缺陷图像并制作数据集,在满足视频检测的需求下,使用K-means算法和1-IoU作为样本距离重新聚类anchor,得到更优的锚框参数;在网络多个结构中引入CBAM注意力机制,增强模型的特征提取能力。实验结果表明,YOLOv5-C算法在训练集上的平均精度达到91.8%,相较于原模型提高1%;YOLOv5-A算法在验证集上的平均精度达到92.7%,相较于原模型提高1.7%;在实际检测效果上,YOLOv5-AC算法在裂缝、破碎板和坑洞的识别准确度上达到89%、62%、90%,相较于原模型提高了45%、4%、5%,且模型的检测速度达到40 FPS。YOLOv5-AC算法具有较高的检测精度和识别速度,一定条件下可以满足在道路缺陷检测中的智能化实时检测需求。 相似文献
4.
带钢表面缺陷检测已成为保证带钢生产质量的重要环节之一。 针对当前带钢缺陷检测算法精度有待提高等问题,提出
了一种基于 YOLOv5 网络改进的算法模型 MT-YOLOv5。 首先在主干网络中引入 Transformer 自注意力机制,使主干网络更聚焦
于图像全局特征信息的提取;其次采用 T-BiFPN 网络结构,将 Transformer 层与 BiFPN 网络结构相结合,进一步增强了图像浅层
特征信息与深层特征信息的融合;然后引入改进后的轻量化网络 RepVGG 替换主干网络中的部分卷积层,增强主干网络的特征
提取能力;最后增加预测层,检测不同尺度的目标。 实验结果表明,MT-YOLOv5 算法在 NEU-DET 数据集上的均值平均精度
(mAP)达到了 82. 4%,较原 YOLOv5s 算法提高了 5. 3%,检测速度为 65. 4 fps,更好地均衡了检测速度与检测精度。 相似文献
5.
针对传统方式检测风力涡轮机表面缺陷时出现的精度不足、泛化性较差问题,提出了一种改进YOLOv5s的风力涡轮机表面缺陷检测模型。在网络结构方面,首先在主干特征提取网络引入改进的MobileNetv3网络,用于协调并平衡模型的轻量化和精度关系;其次采用BiFPN式的融合方式,增强神经网络的多尺度适应能力,提高融合速度和效率;最后为轻量化的自适应调节特征权重,运用ECAnet通道注意力机制,进一步提高神经网络的特征提取能力。在损失函数方面,将边框回归的损失函数修改为αIoU Loss,进一步提升了bbox回归精度。实验结果表明,基于YOLOv5s的改进算法可以在复杂环境下快速准确地识别风机表面的缺陷目标,能够满足实时目标检测的实际应用需求。 相似文献
6.
针对光伏电池电致发光(electroluminescence, EL)缺陷图像存在复杂背景干扰、缺陷目标长宽比和尺寸变化大等问题,在YOLOv5s网络的基础上提出一种改进的YOLOv5s-GD检测模型。首先在特征提取层融合GhostNetV2模块,通过聚合本地和远程信息同步,在压缩模型参数量的同时增强模型对缺陷特征的提取能力;其次在特征融合层引入改进的DenseNet密集网络模块,通过特征重用进一步深度融合多级特征并改善信息传递,有效减少缺陷图像检测中漏检误检的情况;最后添加坐标注意力(CA)机制模块,兼顾通道和空间信息进行特征增强,提高了模型对缺陷目标区域的关注程度。与YOLOv5s原网络相比,YOLOv5s-GD检测模型在增长少量参数的情况下mAP@0.5提升了3.3%,mAP@0.5:0.95提升了2.8%。研究结果表明,提出的YOLOv5s-GD检测模型对光伏电池EL缺陷图像可以有效地定位识别,检测精度有了显著的提高,同时检测速度达到75 fps,为实际工业生产环境中光伏电池EL缺陷图像检测提供技术参考。 相似文献
7.
鸟巢侵占是输电线路经常发生的一个故障情况。鸟类在铁塔上筑巢将会影响铁塔的绝缘性能,造成跳闸事故的发生。传统的输电线路鸟巢识别方法效率低且安全性不足。为此,本文提出了一种改进YOLOv5模型的输电线路鸟巢检测算法。通过在主干网络中加入CBAM注意力模块,以较小的计算代价提升主干网络的特征提取能力。在颈部网络中引入自适应特征融合模块替换原始结构,加强多尺度特征融合效果。使用更加稳定和平滑的Mish激活函数作为激活函数,以提升分类精度和泛化能力。实验结果表明,相较于原始YOLOv5s模型,改进方法在召回率以及平均精度均值方面分别提升4.4%和2.3%。对于遮挡目标以及远近距离目标均表现出良好的性能,验证了改进方法的有效性。 相似文献
8.
针对电力设备背景复杂、小目标密集等特点导致无人机智能电力巡检精度低、效果不佳等问题,提出了一种改进YOLOv5的目标检测算法。首先在原模型上增加一层检测层,重新获取锚点框以便能更好地学习密集小目标的多级特征,提高模型应对复杂电力场景的能力;其次对模型的特征融合模块PANet结构进行改进,通过跳跃连接的方式融合不同尺度的特征,增强信息的传播与重用;最后结合协同注意力模块设计主干网络,以聚焦目标特征,增强复杂背景中密集目标区域的显著度。实验结果表明:所提算法的平均精度均值(IoU=0.5)达到97.1%,比原网络检测性能提升了5.6%,有效改善了复杂背景下小目标的错测、漏检现象。 相似文献
9.
印刷电路板作为电子产品不可或缺的重要组成部分,其市场需求量与日俱增,因此制造无缺陷的PCB具有重要意义;针对PCB缺陷检测中待检测的缺陷目标较小且多数检测目标与背景容易混淆导致的误检漏检,改进的算法在原生YOLOv5算法的骨干网络中引入坐标注意力机制,在颈部网络中引入Transformer Encoder并增加一个适用于小目标的高分辨率检测头,并且将选定锚框的交并比算法部分改为更先进的E-IoU。相较于原生YOLOv5算法,根据算法评价指标精确率,召回率和平均检测精度均值的结果,改进后的算法性能有显著提升,其中平均检测精度均值更是高达98.46%,且检测速度也达到了72.4 Hz,可以满足工业现场对PCB缺陷检测的精度要求。 相似文献
10.
针对煤矿电力设备缺陷检测精度低的问题,提出了一种基于改进YOLOv5s的煤矿电力设备缺陷检测的方法。该方法主要包括3个方面的改进:首先,提出了一种多分支的坐标注意力模块,增强了模型获得缺陷区域信息的能力;其次,提出了一种特征融合网络模块,通过将主干网络和颈部网络之间非相邻的特征信息进行跨层连接,进一步增强了模型的特征表达及融合能力;最后,提出了一种快速空间金字塔池化平均池化模块,并将其嵌入颈部网络的路径融合网络之间,以提升网络浅层定位信息传递到深层的能力。实验结果表明,改进YOLOv5s模型的mAP@0.5提升了3.1%,F1分值提升了3%,满足煤矿电力设备缺陷的检测需求且具有更高的检测精度。 相似文献
11.
针对传统方法检测锂电池表面缺陷精度低、速度慢的问题,提出一种改进的YOLOv4算法。首先,在 CSPDarknet-53 骨干网络中使用空洞卷积代替传统卷积,提高了对不同尺度缺陷的检测。其次,将通道注意力机制插入到颈部网络中,自适应地选择一维卷积核的大小,降低模型的复杂度和计算量。最后,在分类和边界框回归中融合条件卷积来提高网络性能,并扩大数据集以解决由于缺陷样本太少而导致的网络训练过拟合问题。实验结果表明,改进后的YOLOv4算法可以有效检测锂电池表面缺陷并提高对于缺陷的识别和定位能力。改进算法的平均精度均值为93.46%,相较原算法提高了3.03%。 相似文献
12.
为提高工业上焊缝缺陷自动检测与处理的效率,基于深度学习提出一种改进的YOLOv5焊缝缺陷检测方法。针对焊缝样本数据不足的问题,提出一种Mosaic+Mixup的数据增强策略,同时为减少网络的计算量和网络参数量,引入轻量型的GhostNet网络代替YOLOv5主干网络中CSP1模块中的残差模块,并且采用CIOU_Loss作为坐标位置损失提高算法的收敛速度与准确率。最后使用测试集进行焊缝缺陷检测,改进的YOLOv5的平均精度均值(mean Average Precision,mAP)达到96.88%,单张图片检测时间不超过50毫秒,优于传统机器学习算法,能够满足实际工程中对焊缝缺陷的实时性检测要求。 相似文献
13.
在智能酿酒工艺中,对酒瓶外包装进行瑕疵检测是质检环节重要的一环。本文基于改进YOLOv3目标检测算法,将其应用到酒瓶盖瑕疵检测的环节中,最终结果符合工厂生产线对瑕疵检测精度和速度的要求。该方法在YOLOv3主干Backbone网络的残差模块中引入SENet Module,应用注意力机制加强对特征的提取,在Neck特征金字塔网络中引入自适应特征融合网络(ASFF),融合不同尺度的特征信息,提高模型的预测能力,同时引入Focus Loss损失函数解决正负样本不均衡问题,加速损失函数的收敛速度。改进后的YOLOv3-ASFL在自制酒瓶盖瑕疵数据集上mAP达到92.33%,单张图像检测时间仅为0.085s,比原始YOLOv3在相同数据集上的mAP提升了6.59%。改进后的YOLOv3模型性能更好,符合酒瓶包装生产线对瑕疵检测的需求。 相似文献
14.
为提高太阳能电池板缺陷的检测精确,提出了一种改进的 YOLOv5 网络,对太阳能电池板常见的划痕、叉隐、黑斑、黑 边以及无电等5类主要缺陷进行检测和分类。首先,使用改进后的 ODConv 模块对主干提取网络中的普通卷积模块进行替 换,减少网络模型的参数量;其次,将 C3 模块中的Bottleneck 结构替换成包含 ParNet 模块的Res2Net 以增加感受野,从而提 升了探测物体缺陷的能力和检测精确;最后,在预测网络前引入自适应特征融合结构,以融合不同特征图的位置与类别信息, 增强特征表达并提高模型的鲁棒性。对自建的数据集进行训练、验证以及测试,实验结果表明,改进后的模型能够成功识别 和定位5类常见缺陷。与原 YOLOv5 算法相比,在保持原网络高效性的同时,平均检测精确提升了6.2%。 相似文献
15.
无人机采集输电线路航拍图像由于其特殊性,往往背景复杂多变,检测目标存在尺度不一及部分遮挡等问题容易造成检测过程中误检、漏检。本文从特征融合角度出发,提出基于注意力特征融合YOLOv5模型的输电线路金具检测方法。首先,在主干提取网络中引入了具有自注意力机制的AFF-Transformer模块更好的捕获全局信息和上下文信息,提高主干网络特征提取能力。其次,通过在特征融合过程中使用通道空间注意力避免了关键信息丢失。最后,利用双向加权特征融合机制使得模型更有效的将浅层特征和深层特征进行融合,以上改进有效缓解了金具在密集状态下的误检、漏检等问题。通过在自建输电线路金具数据集上进行实验,结果表明:本文提出的方法在原YOLOv5模型的基础上准确率提升了2.7%,模型召回率提高了1.5%,针对于小目标,以及漏检、误检等问题有了较好的改善。 相似文献
16.
各行各业安全问题尤为重要,对人员的异常行为须及时检测并采取相应的措施才能有效预防安全事故的发生。因此本文提出基于改进的YOLOv5网络的异常行为识别算法,通过实时处理视频监控中人员的异常行为,从而保证企业的安全运行。首先,对输入数据集进行特征提取处理,本文使用YOLOv5的backbone特征提取网络提取视频特征,能够在不同图像细粒度上聚合并形成图像特征;其次,送入到时间注意块,因为不同时刻特征的贡献值并不相同,因此加入此模块赋予特征不同的贡献值;最后,送入特征预测网络,该网络由LSTM搭建,对历史特征序列进行解码,以预测当前的特征。以玩手机和吸烟为例对所提出的网络进行验证,训练集准确率高达96.42%,测试集准确率高达95.21%。 相似文献
17.
针对目前钢板缺陷检测精度和速度的不足,提出了一种改进的YOLOv3检测算法.首先使用小波-中值滤波处理缺陷图像,清除图像里的噪声使图像更平滑.然后在原有网络中的密集连接网络(Darknet-53)上增加一个尺度输出增强算法对小目标缺陷的识别能力.最后为了增强算法模型的准确性对算法原有的损失函数进行优化,得到改进版的YO... 相似文献