首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of the matrix resin on the onset and growth of delamination in composite laminates has been investigated in this work. Two kinds of graphite/epoxy composite materials (T300/648-BF3/MEA and T300/634-DDS) with quite different matrix properties have been used. The study was done on two different layups, [(±30)3/902]s and [(±45)2/O2/902]s. Out-of-plane moiré interferometry and diiodomethane-enhanced X-radiography were used to detect delamination. A strength criterion for the onset of delaminatoin is proposed and an assessment made of the effect of matrix properties on delamination onset. A modified energy release rate model is presented for characterization of delamination growth emphasis being placed on assessing the behavior of delamination resistance curves and delamination growth rate. The results indicate that enhancement of matrix strength and ductility increases the critical loads for delamination onset and delamination resistance in the composite laminates under static loading, and significantly reduces the delamination growth rate under cyclic loading.  相似文献   

2.
The failure characteristic of graphite polyetheretherketone (Gr/PEEK) under compression with a centrally located circular discontinuity was investigated through experimentation and a nonlinear ply-by-ply finite element technique. The stacking sequence of the laminates investigated were: [0 °16], [90 °16], [±45 °]4S [0 °/90 °]4S, and [0 °/ ± 45 0°/90 °]2S. In the experimentation, [90 °]16, [0 °/90 °]4S, and [0 °/ ±45 °/90 °]2S laminates, as well as three of the [0 °]16, failed due to a crack that was normal to the loading direction and initiated from the edge of the hole progressing to the outer edges of the specimen. The [±45 °]4S specimens failed to support the load due to an internal crack that originated from the hole's edge and then traveled at an angle of about 42% to the direction of loading. The finite element method used to analytically model the failure of Gr/PEEK accurately modeled the response of the specimens tested experimentally.  相似文献   

3.
Various methods have been presented to obtain the effective damping of a symmetric laminated composite. In this paper, modified classical lamination theory based upon the elastic–viscoelastic correspondence principle was utilized by developing the basic damping of Poisson's ratio for accurately predicting the damping of laminated composite beams. The analysis involves an extension of the elastic–viscoelastic approach. Futhermore, Ni and Adams' theory was used for verifying the modified classical lamination theory. Six typical laminated composites with [±θ]s,[0/θ]s,[0/±θ/90]s,[90/±θ/0]s,[0/90/±θ]s and [90/0/±θ]s, stacking sequences were employed for this study. Numerical results have shown that damping values were in some difference among prediction methods over the particular range of fiber orientation.  相似文献   

4.
The overall flexural buckling control of composite column strips using piezoceramic actuators is examined in this paper. The buckling control is investigated through the use of induced strain actuation associated with the piezoelectric effect and in conjunction with a closed-loop control system. Three column strip specimens have been fabricated from commercially available carbon-epoxy pre-impregnated sheets. The layup configurations are [902/0]s, [± 45/0]s, and [902/± 45]s. The length and width of each test specimen is 280 mm and 35 mm respectively. After manufacture of the composite column strips, piezoceramic actuators were surface bonded at their mid-heights on both sides of the column. Due to imperfections in the material, and of a geometrical nature, the composite column strips, with inactivated piezoceramic actuators, will deflect from the onset of loading and reach an ultimate load capability at high deflection levels. As a result of the presence of imperfections, this ultimate load will be less than the critical buckling load of the ideal structure. By applying a controlled voltage to the actuators a reactive moment will be induced at the column centre thereby removing the lateral deflections and enforcing the column to behave in a perfectly straight manner. An exact theoretical buckling analyses is outlined. This is used to evaluate the critical buckling loads of the individual composite test specimens. The test procedure is outlined and load-deflection plots, obtained with and without active control, are presented. The composite column strips with active control are shown to clearly demonstrate an increase in axial compressive load capacity compared to those without control. For the layup configurations considered, increases in load carrying capability are of the order of 19.8%–37.1%.  相似文献   

5.
S.J. Kim  S.H. Chang   《Composite Structures》2006,75(1-4):400-407
In this paper compressive tests of carbon/epoxy (plain weave, 3k) fabric composites were performed to investigate the relation between compressive strength and various bias angles and shear angles. Compressive properties such as chord modulus and maximum strength of the fabric composite materials are essential to analyze the drape behaviour and estimate the quality of the final products. Various specimens with different bias and shear angles which were fabricated by using autoclave de-gassing moulding process were prepared to estimate the strength and chord modulus with respect to the bias and shear angle variations. The stacking sequences of the compressive test specimens are [0]10T, [15]10T, [30]10T and [45]10T for bias specimens and [±37]10T, [±32]10T, [±28]10T, [±22]10T for sheared specimens. Micro-tow structures were observed to correlate the fabric compressive strength with crimp angle. Anti-buckling rig was involved to prevent specimens from buckling during the compressive tests. The compressive test was performed with 1.3 mm/min strain rates. Compressive test results were compared with calculation results. Facture modes which were classified in two different modes were analyzed using microscopic observation.  相似文献   

6.
This paper presents an approach to detect surface cracks in various composite laminates. Carbon/epoxy composite AS4/PEEK was used to fabricate laminated plates, [0]16, [90]16, [(0/90)4]S and [±45/0/90]2S. Surface crack damage was created on one side of the plate using a laser cutting machine. Modal analysis was performed to obtain the mode shapes from both experimental and finite element analysis results. The mode shapes were then used to calculate strain energy using the differential quadrature method (DQM). Consequently, the strain energies of laminated plates before and after damaged were used to define a damage index which successfully identified the surface crack location.  相似文献   

7.
A quasi three-dimensional yield function, which is quadratic in stresses except for σ11, is proposed for graphite/epoxy composites. The elastic-plastic interlaminar stress response near a free edge in the [90/0]s, [0/90]s, and [45/−45]s laminates with and without delamination cracks was investigated using the pseudo three-dimensional finite element technique. The plasticity model was evaluated by comparison with off-axis experimental data. Since shear response is the key element for nonlinear stress-strain behavior of graphite/epoxy composites, the plasticity theory predicts interlaminar stresses in the [45/−45]s laminate significantly different from linear elasticity. Moreover, the existence of a delamination crack caused more plasticity effects on interlaminar stresses.  相似文献   

8.
复合材料开孔层板压缩渐进损伤试验   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究碳纤维增强树脂基复合材料开孔层板在压缩加载过程中的损伤起始、演化方式和损伤特点,采用微距拍摄、逐级加载超声C扫描、X光扫描和扫描电子显微镜观测4种观测手段对国产CCF300/5228A[45/0/-45/90]4s、[452/02/-452/902]2s、[454/04/-454/904]s3种铺层方式的开孔层板进行了压缩试验研究。对压缩载荷作用下开孔层板的损伤起始和损伤演化进行了观察和对比。对试验中观测到的纤维微屈曲、纤维挤出、孔边开裂和分层扩展等现象之间的关系进行了分析和说明。试验结果表明:压缩载荷下45°和90°铺层相邻位置为层板易分层位置,含45°和90°铺层相邻位置的开孔层板渐进损伤过程较为明显:开孔层板在压缩载荷下较早出现损伤,损伤的起始和演化缓解了孔边应力集中,促使压缩应变能在孔边逐步释放,推迟开孔层板压缩破坏的发生,提高层板压缩承载能力。研究结果可为材料结构损伤容限设计提供依据。  相似文献   

9.
The energy release rate in delamination of angle-ply laminated double cantilever composite beam specimens was calculated using the compliance equation, and interlaminar cohesive strengths were obtained. Instead of the traditional approach of a beam on an elastic foundation, a second-order shear-thickness deformation beam theory (SSTDBT) was considered. The equilibrium equations were obtained using the principle of minimum total potential energy and the system of ordinary differential equations were solved analytically. The problem was solved for [0°]6 , [±30°]5, and [±45°]5 laminates with mid-plane delaminations and the results were verified using experimental evidence available in the literature.  相似文献   

10.
Pyrolytic trifluoromethylation of [76], [78], [84], and aza[60]fullerenes with silver trifluoroacetate at 300°C results in extensive polyaddition of up to 18, 18, 20 and 20 CF3 groups, respectively. In contrast to trifluoromethylation of [60]- and [70]fullerenes that give a full range of derivatives ranging upwards from Cn(CF3)2, [76]-, [78]-, and [84]-fullerenes only give Cn(CF3)6-18 derivatives, largely in the 10-12 CF3 range; reaction with [76]fullerene is accompanied by formation of C60(CF3)6 attributed to cage fragmentation. For aza[60]fullerene the hexa-addition level dominates, in contrast to its other reactions which give predominantly penta-addition products. All the compounds showed peaks at 1256±2 and 1180-1190 cm-1, due to the CF3 group, and peaks in this region are shown also by the soluble extract obtained on trifluoromethylation of nanotubes. As in trifluoromethylation of [60]- and [70]-fullerenes, the products obtained initially are involatile, attributed to formation os silver complexes; these are decomposed on subsequent solution in toluene. Mixed isomeric trifluoromethylated C60F8 derivatives viz. C60F7CF3, C60F6(FG3)2, C60F5(CF3)3 and C60F4(CF3)4, and C60F4CF3CF2CF3 (a C60F6 derivative) have been isolated from fluorination of [60]fullerene with MnF3/K2NilF6 at 510°C.  相似文献   

11.
从宏、微观的角度研究了碳纤维增强聚酰亚胺树脂基MT300/KH420复合材料的高温力学性能,重点揭示了MT300/KH420复合材料[0°]14和[±45°/0°/90°/+45°/0°2]s层合板在常温~500℃的弯曲性能变化规律。研究表明:MT300/KH420复合材料高温力学性能优异,[0°]14层合板在420℃的弯曲强度保持在51%以上,弯曲模量在500℃以内变化很小。[0°]14层合板在常温下断口粗糙,且贯穿厚度,表现为脆性破坏;随温度升高,树脂流动性增强,呈现出黏弹效应,破坏逐渐集中在加载点处,在500℃,部分树脂热解,纤维束脱离基体并氧化。[±45°/0°/90°/+45°/0°2]s层合板高温弯曲性能较为稳定,主要破坏为上、下表面沿45°方向开裂,并伴有层间分离,在500℃出现严重分层破坏;相比于受基体控制的层合板弯曲性能,温度对受纤维控制的层合板弯曲性能影响较小。  相似文献   

12.
Physical aging behavior of high-performance composites   总被引:1,自引:0,他引:1  
The effect of physical aging on the viscoelastic creep properties of a thermoplastic-toughened cyanate ester resin (Fiberite 954-2) and its IM8/954-2 composites, and a semi-crystalline thermoplastic (Fiberite ITX) and its IM8/ITX composites was investigated. The study was carried out by using dynamic mechanical analysis (DMA) and tensile creep tests. Tests were performed on plain resin, [90 °]4s, and [± 45 °]2s composite specimens. Creep tests were conducted up to an aging time of 54 h with the logarithmic aging shift rate, μ, and its dependence on sub-glass transition aging temperature, being determined. The results showed significant physical aging in both material systems. To study the effect of long-term aging on creep behavior, momentary creep tests were conducted on the [± 45 °]2s composites of both material systems at temperatures between 140 and 200 °C. Master curve plots were drawn from these momentary creep tests using the time/temperature superposition principle (TTSP). Effective time theory (ETT) was then used to modify TTSP and incorporate physical aging effects.  相似文献   

13.
Dynamic pulse-buckling response of carbon/epoxy and E-glass/epoxy laminated composite beams with [(±67.5)n]s ply sequence, subject to axial impact was investigated experimentally and numerically. The laminated beams deformed like ductile metals, retaining a residual deformed shape after being axially impacted, exhibiting no obvious delamination. The ‘crest' deflection of the beams was found to be linearly proportional to the impact energy. The numerical investigation showed that the beams' top and bottom surfaces experienced stresses (transverse stress component) in excess of the tensile strength limits of the matrices.  相似文献   

14.
This paper describes an experimental study of the compressive failure of T800/924C carbon-fibre/efoxy composite laminates. Undirectional laminates loaded parallel to the fibres have compressive strengths that are 70% of the tensile strength and fail by fibre-microbuckling. During microbuckling the fibre debonds from the matrix, and the fibres break in bending. Multidirectional [(±45/02)3]sm laminates were also tested in compression, and the critical failure mechanism observed was microbuckling of the 0° plies. The failure strain was almost the same as for the undirectional laminate, The failure strain was almost the same as for the unidirectional laminate, which indicated that the ±45° plies have no significant influence on the failure strength of the 0° plies.  相似文献   

15.
The matrix cracking behavior of a new high-performance thermoplastic composite material, K3B/IM7, was systematically investigated. Laminates in various grouped thickness and ply stacking sequences, [02/902/02], [02/904/02], and a quasi-isotropic laminate [+45/0/−45/90]s were tested under static and tension–tension fatigue loading. Depending on the stacking sequence of the laminates and the type of loading, various matrix cracking behavior were found. Under static loading, the matrix cracks were mainly close to the specimen edges. A few cracks were found to penetrate the specimen width, even when the load was large enough to break the specimen. However, under fatigue cyclic load, the edge initiated cracks propagated fully across the specimen width. Combined with the fatigue Paris Rule and considering the ply thickness and stacking sequence, the energy release rate method was applied to predict the relations between the loading strain amplitude and fatigue cycles for matrix cracking failure.  相似文献   

16.
Analysis of stiffness reduction of cracked cross-ply laminates   总被引:4,自引:0,他引:4  
Stiffness reduction of cracked [0°m/90°n]s laminates is analyzed by variational methods on the basis of the principle of minimum complementary energy. For this purpose admissible stress systems are constructed which satisfy equilibrium and all boundary and interface conditions. The optimal stress field is then determined by minimization of complementary energy. The analysis allows for crack interaction and random crack distribution. Results are given for Young's modulus, shear modulus and Poisson's ratio. Young's modulus results are in excellent agreement with experimental data for [[0°/90°3]]s glass/epoxy laminate.  相似文献   

17.
The partial substitution of Zn2+ for Ag+ in Ag4P2O7 leads to the formation of a wide glassy domain of composition [Ag4P2O7] (1−y) [Zn2P2O7] (y) with 0.20y0.87. The introduction of AgI in these materials results in a new series of glasses of formula [(Ag4P2O7)(1−y) (Zn2P2O7)(y)] (1−X) [AgI] (x), which domain for the composition y = 0.25 corresponds to 0x 0.64. The structure as well as the thermal and electrical properties of these materials are compared with those of the [AgPO3] (1−X) [AgI] (x) and [Ag4P2O7] (1−x) [AgI] (x) glasses.  相似文献   

18.
The contact phenomena and stress distributions in the vicinity of the hole on mechanically fastened joints are investigated in composite laminates exhibiting nonlinear elastic behavior. The effects of fastener stiffness, friction force between the fastener and the composite laminates, geometrical nonlinearities due to concentrated fastener load around the hole edge for the snug and clearance-fit in the [0 °]S, [± 45 °]S, [0°/± 45 °]S and laminates are also considered. An efficient numerical procedure is developed for the solution of the contact problems with Coulomb friction between the fastener and the hole based on a linear complementarity problem (LCP) formulation in an incremental form. A nonlinear finite element code for stress analysis of laminated composites using Lemke's complementary pivoting algorithm is developed for solving the LCP. The nonlinear analysis is composed of the combination of updated Lagrangian formulation of the frictional contact problem and the nonlinear shear stress-strain relation in each ply. The accuracy, applicability and computational efficiency of the proposed method are confirmed by comparison with previous researches.  相似文献   

19.
The microdebonding test was used to investigate the effects of thermal residual stresses resulting from different lay-ups in fabrication on the fiber/matrix bond strength of a graphite-fiber-reinforced polyimide composite. This was accomplished by comparing the results of a cross-plied laminate with those of a unidirectional laminate. The results indicated that the measured interfacial bond strength of the unidirectional composites was greater than that of the cross-plied laminate. The thermal radial stress distribution around the fiber for the unidirectional and the [02, 902]s laminates were estimated, to explain this reduction of the interfacial bond strength.  相似文献   

20.
基于伴随能量释放的渐进损伤演化思想,建立了复合材料层合板面内失效分析的连续介质损伤力学(CDM)分析模型,该模型包含损伤表征、损伤起始判定和损伤演化法则3个方面。基于CDM模型,通过引入损伤状态变量表征损伤,建立了平面应力状态下的材料损伤本构模型。采用损伤参量 fE改写Hashin准则,以判定损伤的起始。损伤演化由特征长度内的应变能释放密度控制,建立了损伤状态变量关于等效应变的渐进损伤演化法则。模型中还同时考虑了面内剪切非线性和网格敏感性,并进行了对比分析。对含缺口的[90/0/±45]3s和[(±θ4]s 2类典型复合材料层合板的面内拉伸失效进行了分析,结果表明,本文中的模型能有效预测复合材料层合板的面内拉伸强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号