首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Titaninm-nanohydroxyapatite (Ti-nHA) composite powders, composed of titanium with 10 vol.% and 20 vol.% of nano-hydroxyapatite, were milled in a planetary ball mill using alcohol media to avoid excessive heat. XRD and SEM were performed for characterization of the microstructure, and the homogeneity of Ti/HA nanocomposite powder was evaluated by EPMA with prolonged ball milling time. The results show that under the condition of wet milling, the grain size of Ti-nHA composite powders is decreased with the increase in ball milling time and the amount of the addition of nHA. While for milling of 30 h, the nanocomposite powder with free structure, which consists of the nano-hydroxyapatite (nHA) particles and titanium (Ti) phase, is obtained. Three stages of milling can be observed from the dement mapping of Ti, Ca, and P by EPMA; meanwhile, it is found that the nHA would be more homogenously distributed after milling for 30 h.  相似文献   

2.
The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits  相似文献   

3.
Ball mixing and electroless plating were respectively used as the adding methods of metallic phase to prepare Ni/(90NiFe2O4-10NiO) cermets for the inert anode in aluminum electrolysis. The microstructure and thermal shock resistance of cermet samples were studied. The results show that, for the samples prepared by ball mixing method, aggregation of metallic phase is found in either the green blocks or sintered samples and the extent of aggregation increases with the increase of metal content. For 6.5Ni/(90NiFe2O4-10NiO) cermets prepared with electroless plating method, the homogeneous and fine metallic particles are found in either the green compacts or sintered samples, but the relative density and thermal shock residual strength decrease by 3% and 28%-58% respectively, compared with samples prepared with ball mixing method.  相似文献   

4.
The cryogenic milling and milling in conjunction with dielectric barrier discharge plasma (DBDP)have been separately set up. The combined effect of low temperature and plasma on ball milling has been investigated by examining the refinement of particle size and grain size of iron powder using scanning electron microscopy, X-ray diffraction, and small angle X-ray scattering. It was found that the mean size of iron particles could reach 104nm only after 10 hours of ball milling in conjunction with DBDP, whereas a minimum average grain size of 8.4nm was obtained by cryomilling at -20℃; however, it is difficult to refine the particle size and grain size under the same milling condition in the absence of DBDP and cryogenic temperature.  相似文献   

5.
The effect of post annealing on the phase transformation of Ni52Mn24Ga24 ferromagnetic shape memory alloy particles prepared by ball milling was studied. Ni52Mn24Ga24 alloy particles at micron scale were prepared successfully by ball milling the crushed bulk alloy. SEM observation reveals that the shape of the as-milled particle is regular polygon and a lot of cracks can be seen at the surface of the particles. For as-milled particles, the widening of characteristic peak can be found in the XRD pattern, and no transformation characterization can be detected by DSC. Post annealing at the elevated temperature will recover the transformation behavior of milled particles to the same level as that of bulk sample. It is shown that with increasing annealing temperature above 400 ℃, Ms decreases and As increases, while the magnetic transition temperature keeps constant. XRD results indicate that the change of grain size of the particles results in such an effect of post annealing.  相似文献   

6.
The FTIR spectroscopy indicates that the adsorption of quaternary ammonium salt DTAL on the dia-spore and kaolinite is physical adsorption. The adsorption of cationic surfactants measured by two-phase titration shows that the adsorption on the kaolinite is notably more than that on diaspore. The adsorption isotherm on ka-olinte is linear while that of DTAL on diaspore is two-step flat form. The analysis on the cationic ions of kaolinite supernatants shows that kaolinite releases plenty of crystalloid structure ions which countervail the crystalloid charge because of the adsorption of the cationic surfactant. The mechanisms of the quaternary ammonium salt DTAL on flotation separation of diaspore and kaolinite include ion exchange interaction as well as electrostatic force.  相似文献   

7.
Graphene-reinforced copper composites recently have attracted more attention, since they exhibited excellent mechanical properties and could be used widely in many fields. Few-layer graphene (FLG) and copper powder were mixed by ball milling to produce homogeneous composite powders. Then, FLG-reinforced copper composites (FLG/Cu) were fabricated by spark plasma sintering (SPS) using the composite powders with a FLG volume fraction of 2.4 vol%. The effects of the rotating speed and the time of ball milling were analyzed based on the microstructure evolution and properties of the FLG/Cu composites. Obvious strengthening effect of FLG was found for the composites, and the conductance of the composite reaches 70.4% of IACS. The yield strength of the composite produced by ball milling at a speed of 100 r/rain for 4 h is 376 MPa, which is 2.5 times higher than that of copper and higher than that of copper composite enhanced by 5 vol% CNTs (360 MPa). The defects produced in FLG with the increase of rotating speed and time could reduce the mechanical and conductive properties of the composites.  相似文献   

8.
The nanocrystalline β-SiC powder was successfully synthesized by ball milling the Si-50%C elemental powder. During ball milling, a solid solution of C in Si, Si(C), firstly forms, followed by SiC. The formation of SiC is controlled by the mixing mechanism of the gradual diffusion reaction(GDR) and the mechanically induced self-propagating reaction(MSR). The amount of β-SiC increases with milling time increasing. After 40 h milling, there exists only β-SiC in the milled powder. The grain size of β-SiC is about 6.4 nm after the powder is milled for 60 h. After the 60 h-milled Si-50%C elemental powder is heat treated at 1 100℃for l h, the grain size of β-SiC does not change, but the lattice ordering degree offl-SiC increases.  相似文献   

9.
TiAl alloy was prepared by intense plastic deformation and subsequent reaction sintering.The effect of plasetic deformation on the microstructure of sintered TiAl alloy was investigated using energy dispersive X-ray spectroscopy(EDS),optical microscopy and transmission electron microscopy(TEM).The results show that the intense plastic deformation of reacting Ti and Al phases caued by high energy ball milling refines the as-sintered microstructure.The longer the milling time,the finer the grain size of γ and lamellar(α2 γ)phases.The finer grain size improves the properties of the TiAl alloy.It is also found that th volume fraction of lamellar(α2 γ)phases increases first,then decreases with increasing milling time.Based on the experimental results theoretical discussion was presented.  相似文献   

10.
NbC was used as reinforced particles in the fabrication of iron-base composite.Baill milling was introduced to overcome the problems of agglomeration and powder separation during powder mixing.After ball milling,the fine NbC particles are embedded on the surface of iron particles and evenly distributed in the mixed powders.Warm compaction was used not only to increase the green density but also to improve the formability of the mixed powder and to improve the compact‘s green strength to facilitate handling.The influences of fabrication parameters such as ball milling time,annealing temperature and time,warm compaction temperature,sintering temperature and sintering time were studied.Compacts with a relative sintered density of 97% and a tensile strength of more than 800MPa can be obtained by using a ball milling time of 5h,an annealing temperature of 800℃,a compaction pressure of 600MPa,warm compaction temperature of 120℃,sintering temperature of 1280℃,and sintering time of 80min,The shrinkage at this sintering condition was approximately 4.3%。  相似文献   

11.
I Introduction Thermosensitive materials are getting more and more attention in recent years. Now major thermo- sensitive materials, such as shape memory alloy, bimetallic strips and shape memory polymer are based on inherent thermal expansivity or phase-…  相似文献   

12.
《Acta Materialia》2004,52(8):2239-2250
The fracture behaviors of α-zirconium phosphate (α-ZrP) based epoxy nanocomposites, with and without core-shell rubber (CSR) toughening, were investigated. The state of exfoliation and dispersion of α-ZrP nanofiller in epoxy were characterized using X-ray scattering and various microscopy tools. The level of enhancement in storage moduli of epoxy nanocomposite against neat epoxy is found to depend on the state of exfoliation of α-ZrP as well as the damping characteristics of the epoxy matrix. The fracture process in epoxy nanocomposite is dominated by preferred crack propagation along the weak intercalated α-ZrP interfaces, and the presence of α-ZrP does not alter the fracture toughness of the epoxy matrix. However, the toughening using CSR can significantly improve the fracture toughness of the nanocomposite. The fracture mechanisms responsible for such a toughening effect in CSR-toughened epoxy nanocomposite are rubber particle cavitation, followed by shear banding of epoxy matrix. The ductility and toughenability of epoxy do not appear to be affected by the incorporation of α-ZrP. Approaches for producing toughened high performance polymer nanocomposites are discussed.  相似文献   

13.
《Acta Materialia》2008,56(17):4905-4912
Montmorillonite clay modified with the ammonium salt of amine terminated amide oligomer was employed in the preparation of aromatic polyamide/organoclay nanocomposites. Organoclay prepared was examined for its dispersion behavior in the polyamide matrix. High-molecular-weight amide chains were synthesized from 4,4′-oxydianiline and isophthaloyl chloride in dimethylacetamide. These amide chains were selectively end-capped with carbonyl chloride end groups to interact chemically with modified montmorillonite clay. The resulting composite films containing 2–20 wt.% of organoclay were characterized for TEM, XRD, thin film tensile testing; TGA, DSC and water absorption measurements. The distribution of organoclay and nanostructure of the composites were investigated by XRD and TEM analyses. Results from mechanical testing revealed that modulus and strength improved up to 6 wt.% clay loading while elongation and toughness of nanocomposites increased with the addition of 2 wt.% clay content in the matrix. Thermal decomposition temperatures of the nanocomposites were in the range 300–450 °C. These nanocomposites exhibited increase in the glass transition temperatures relative to pristine polyamide depicting interfacial interactions between the two phases. The percentage water absorption of these hybrids was found to be much reduced upon the addition of modified layered silicate indicating decreased permeability.  相似文献   

14.
Epoxy resin nanocomposites, based on the diglycidyl ether of bisphenol-A (DGEBA) and tetraglycidyl diamino diphenyl methane (TGDDM), are prepared via in situ co-polymerization with 4,4′-diaminodiphenylsulfone (DDS) in the presence of octa-aminophenyl silsesquioxane (OAPS) at levels of up to 20 wt.% of the latter. The curing reaction involving epoxy, DDS and OAPS is investigated using Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry and dynamic mechanical analysis show that the glass transition temperatures of the polyhedral oligomeric silsesquioxane (POSS) containing nanocomposites are higher than the corresponding neat epoxy systems at lower concentrations of POSS (?3 wt.%). Thermogravimetric analysis indicates that the POSS–epoxy nanocomposites display high ceramic yields, suggesting improved flame retardancy. The increasing concentration of OAPS into epoxy–amine networks exhibits a decreasing trend in the values of dielectric constant compared with those values obtained from neat epoxy systems. The higher epoxy functionality present in TGDDM leads to nanocomposites which possess enhanced thermal stability and higher dielectric constants than the DGEBA-based nanocomposites. X-ray diffraction analysis reveals that the molecular level reinforcement of POSS cages occurs in both the cases of DGEBA- and TGDDM-based hybrid epoxy nanocomposites. Furthermore, homogeneous dispersion of POSS cages in the epoxy matrices is evidenced by scanning electron microscopy, which further confirms that the POSS molecule has become an integral part of the organic–inorganic inter-cross-linked network systems.  相似文献   

15.
吉涛  方莹  李镇  徐传达 《表面技术》2012,41(4):80-83
采用高能球磨活化粉煤灰,并对球级配、球料比、转速以及球磨时间进行正交试验,将经不同时间活化的粉煤灰与Na2CO3按一定比例煅烧溶出,得到Al2O3.通过测试分析,研究了高能球磨活化各工艺参数对Al2O3溶出率的影响,得到了最优化工艺条件,并对Al2O3溶出过程的动力学进行了验证分析.结果表明:当表面机械活化6h、溶出温度90℃、液固比L/S=6、硫酸浓度4 mol/L时,效益最高;此反应属于收缩未反应芯模型,表观活化能为60.87 kJ/mol,反应级数为0.1701.  相似文献   

16.
This study investigated the phase transformation of the flaky shaped Ni-Mn-Ga powder particles with thickness around 1 μm prepared by vibration ball milling and post-annealing. The SEM, XRD, DSC and ac magnetic susceptibility measurement techniques were used to characterize the Ni-Mn-Ga powders. The structural transition of Heusler → disordered fcc occurred in the powders prepared by vibration ball milling (high milling energy) for 4 h, which was different from the structural transition of Heusler → disordered fct of the powders fabricated by planetary ball milling (low milling energy) for 4 h. The two different structures after ball milling should be due to the larger lattice distortion occurred in the vibration ball milling process than in the planetary ball milling process. The structural transition of disordered fcc → disordered bcc took place at ∼320 °C during heating the as-milled Ni-Mn-Ga powders, which was attributed to the elimination of lattice distortion caused by ball milling. The activation energy for this transition was 209 ± 8 kJ/mol. The Ni-Mn-Ga powder annealed at 800 °C mainly contained Heusler austenite phase at room temperature and showed a low volume of martensitic transformation upon cooling. The inhibition of martensitic transformation might be attributed to the reduction of grain size in the annealed Ni-Mn-Ga particles.  相似文献   

17.
The effects of Ni content and ball milling time on the hydrogen storage thermodynamics and kinetics performances of asmilled La_5Mg_(95-x)Ni_x(x = 5, 10, 15) ternary alloys have been investigated.The evolution of microstructure and phase of experimental alloys in the absorption/desorption process has been characterized by XRD, SEM and HRTEM.The hydrogen storage kinetics and thermodynamics performances and PCI curves have been tested using the Sievert apparatus.It is found that the rising of Ni content remarkably improves the hydrogen storage kinetic performance, but reduces hydrogen storage capacity.And with the increase in milling time, hydrogen desorption activation( E_a) value decreases firstly and then increases; the minimum value is 47.6 kJ/mol, and the corresponding milling time is 10 h for La_5Mg_(85)Ni_(10) alloy.As for the thermodynamics properties, the hydrogenation enthalpy(Δ H) and hydrogenation entropy(Δ S) both decrease firstly and then increase with the rising of Ni content and milling time.The composite La_5Mg_(85)Ni_(10)alloy milled for 10 h exhibits the best thermodynamics and kinetics performances, the lowest E_a of 47.6 kJ/mol, absorption of 5.4 wt.% within 5 min and desorption of 5.2 wt.% within 3 min at 360 ℃ and the lowest Δ H and Δ S of 72.1 kJ/mol and 123.2 J/mol/K.  相似文献   

18.
In the present work, indole-3 butyric acid (IBA) was inserted between montmorillonite clay platelets by cation exchange. The clay treated with the organic compound (IBA-modified clay) was then dispersed in an epoxy resin at a low concentration (2 wt.%). IBA was chosen to act both as an inhibitor and an adherence promoter. The effect of the IBA-modified clay on the microstructure and on the protective properties of the epoxy coating deposited on carbon steel was evaluated by a thermostimulated-current (TSC) method and by electrochemical impedance spectroscopy (EIS). The TSC measurements showed the specific action of IBA-modified clay which decreased the molecular mobility of the polymer chain by comparison with the pure epoxy. Impedance measurements corroborated the role of the modified clay on the barrier properties of the coating which remained high as a function of exposure time in a 0.5 M NaCl solution. The corrosion resistance of the carbon steel coated with the epoxy resin containing IBA-modified clay was significantly higher than that obtained with the clear coat. Polarization curves plotted in the presence of an artificial defect demonstrated the inhibitive role of IBA at the carbon steel/coating interface. The good adherence of the coating was seen during salt spray test.  相似文献   

19.
分别通过物理法和化学法制备石墨烯载镍催化剂(Ni/Graphene),并采用球磨预处理或超声分散的方式与镁粉混匀,结合氢化燃烧合成和机械球磨复合技术制备镁-镍/石墨烯(Mg-Ni/Graphene)复合物储氢材料。采用X射线衍射仪、扫描电镜及气体反应控制器研究了材料的相组成、微观形貌和吸放氢性能。比较发现,添加化学法制备的Ni/Graphene并采用球磨预处理的Mg-Ni/Graphene复合物具有最佳的吸放氢性能,复合物的起始放氢温度降低,放氢速率加快。其在373 K温度下,100 s内就基本能达到饱和吸氢量6.21%(质量分数);553 K,1800 s内完全放氢,且放氢量达到6.05%。球磨预处理使得Ni/Graphene更均匀的与Mg接触,利于发挥Ni的催化作用和石墨烯优异的导电导热性。化学法制备的Ni/Graphene原位还原出纳米晶Ni,有利于形成纳米级Mg2NiH4晶粒,促进复合物储氢性能的改善。  相似文献   

20.
采用定性和定量手段系统比较了高能球磨法与常规混合法对SiCp(B4Cp)/Al复合材料增强体颗粒分布均匀性的影响。研究结果表明:高能球磨法能使增强体颗粒弥散均匀分布于基体中,是实现增强体颗粒均匀分布的最有效的方法;常规混合法制备的复合材料存在增强体颗粒的偏聚现象,颗粒偏聚程度与混粉方式和混粉时间有关,干混存在最佳混粉时间,而湿混时混合物均匀度随混粉时间延长而不断提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号