共查询到20条相似文献,搜索用时 46 毫秒
1.
根据缩放管管内湍流对流换热的场协同控制机理,提出一种强化缩放管管内湍流对流换热的改型结构,即保持肋高和肋距不变的前提下,采用平直连接收缩段和扩张段的方式,延长收缩段的长度,相应缩短扩张段的长度,增强管内速度场与温度梯度场的协同作用.模拟计算的结果表明,这种新的结构可优化缩放管中速度场与热流场的协同关系,提高Nusselt数4.67%~8.34%,但同时也增大了阻力7.87%~15.22%(Re=1.5×104~5×104).与惯用的优化缩放管结构(收缩段为扩张段2倍)相比较,改型后的缩放管的Webb性能因子η=1.008~1.06. 相似文献
2.
3.
4.
5.
6.
7.
8.
9.
以水为工作介质,应用三维常物性不可压缩流体稳态湍流模型,对凹槽管内的流动、阻力与传热性能进行了模拟研究,并与光滑管进行对比。结果表明,凹槽管主要通过扰动、漩涡使层流底层的局部温度梯度变大,从而使换热性能比光滑管强。凹槽结构能显著增强流体的扰动和相互掺混,并产生径向漩涡,减小边界层厚度,加剧流体湍流,促使边界层表面快速更新,从而强化传热,但同时也使其流动阻力增加。最后应用场协同理论,从局部换热角度分析了凹槽管强化换热的机制。强化换热另一重要途径是使换热器内速度场与温度梯度场之间夹角变小,改善速度场与温度场协同程度。 相似文献
10.
The distributions of thermal resistance in viscous sublayer,buffer region and turbulent core region,local flow resistance and local heat transfer characteristics at different locations downstream of the twisted-tape element were numerically studied in a converging-diverging tube inserted with spaced twisted-tape element by analyzing the attenuation of self-sustaining swirl flow.The results showed that the local performance was poor as thermal resistance was too concentrated in its distribution for a particular region.The more uniform the distribution of thermal resistance,the better the local performance.The local performance reached its best when the fluid just left the spaced twisted-tape,in which the flow resistance dropped substantially but the enhancement of heat transfer was still significant.The self-sustaining flow was maintained at a long distance.The best performance was at the length of 36.85 times the diameter,increasing by 6.8% compared with a converging-diverging tube. 相似文献
11.
The enhancement of convective heat transfer in a glass tube heat exchanger was researched.A simple and efficient method using spiral wire turbulence promotors in the glass tube isrecommended.A series of experiments were conducted,and thetlon have been obtained.Performance evaluations Nr the enhanced heattrans比r In this heatexchanger are su门niii ed up and discussed Based on the vlewp01nt Of止berinodynaffi1CS,止he avaHableenergy lossof the heat transfer swtern Inside the tube Is analwed to determine and evaluate the over-all趴ct oQthe enhanced heat transfer,The mechanism ofenhanced heat transfer]n the glass tubeand the Influence of turbutlvlty In the fough tube are also analysed and discussed. 相似文献
12.
在凝结换热实验台上 ,采用恒壁温法和恒热流法对油品在大粗糙度横肋管中的层流与湍流摩擦阻力与传热特性进行了实验研究 .实验过程中Re为 5 0~ 6 2 0 0 ,Pr为 75~ 2 6 0 ,管子粗糙高度为 5mm ,导程为 30mm .实验结果表明 ,由于实验管特殊几何结构 (大粗糙度 )和油品物性参数的相互作用 ,使其表现出与以水或空气为工质的常用强化管不同的流动传热规律 ,并且实验方法对实验结果的影响不大 .根据实验结果 ,提出了层流区和湍流区油品量纲 1摩擦系数及传热系数的关联式 ,并将实验数据与Ravigururajan和Bergles关联式的计算值进行了比较 .研究结果可用于大粗糙度横肋管换热器的设计及运行参数优化 . 相似文献
13.
应用热 -质比拟技术 ,对间断环面槽肋片管束进行了传质与流动阻力实验 ,根据热 -质比拟关系得出传热结果 .分析了该种换热芯子在不同板间距时的传热与阻力特性 .与光板肋片管换热芯子比较 ,该种换热元件的传热与阻力都有很大提高 ,而阻力增加幅度更大 .实验结果为运用单位选用肋片管式换热器提供了依据 . 相似文献
14.
15.
16.
17.
<正>1前言 直接测定对流换热系数的方法分稳态法和瞬态法,前者对实验条件要求苛刻.近年来,瞬态法倍受人们关注”-”.Hausen和Kast’‘·”相继阐述了利用周期变化的流体温度在固体壁内的传播特性确定对流换热系数的原理,即根据流体与固体温度变化之间的相位角滞后(或振幅衰减)确定对流换热系数.Roetzel‘”提出了一套适用于任意形式周期振荡流体温度的瞬态测量方法. 对实测的流体温度波Tf(t),利用傅里叶级数分析方法把Tf*)展开为傅里叶级数,其一次谐波正弦和余弦函数项的系数表述为 u。——一Ill(t)Slnwtdt.u。——一11’()cosnddt(l)则一次谐波可表达为 01。“fslflO此十贝)(2)式(2)中,振幅u;一 Vu: + ug,相位角9一 arc ig(uc/us),一次谐波的周期 P—Zt。,角速度。一。八。2 测量基础2.1 模型A——霉壁面导热热阻 忽略管壁导热热阻,管壁的能量方程为 厂dL川t一。S叮f一几)一兄凡(几一瓦)(3)若求得的管壁周期振荡温度的一次谐波为Tw(t)一u。sinnd,则流体温度超前相位角9和振幅U;分别为 .y.,o\ It【._o\“工_P_\“ 9”sfCtg WN .Ut=U。。l---- W l e -- (4)一旦实际测得相位角差贝或振幅比ff八。,即可确定对流换热系数。;.显然,当ac《a时,管外对流换热的影响甚小.当液体在管 相似文献
18.
<正>1引言 传热恶化有不同的类型,就工程换热设备设计和运行的实际需要来说,人们最关心的是以下几点:(1)传热恶化发生的位置(壁温飞升起始点),一般用。cr来表示;(2)传热恶化发生后壁温飞升的最大值,一般用A儿。。来表示;(3)壁温飞升最大值的位置,一般用K。。。来表示;(4)传热恶化发生后的。mi。。本文着重分析讨论后3个问题。 相似文献
19.
翅片管束瞬态传热研究 总被引:1,自引:0,他引:1
利用离散流动的概念和二维非稳态传热的数值计算方法,建立了流体从翅片管束换热器流出时温度变化的计算模型,并设计了配比方法,使离散流动瞬态法有了较大的改善.本文用该方法确定了空气横掠大管径错排翅片管束的换热系数,同时还用恒壁温法对该管束的换热系数进行了试验研究,二者结果符合很好. 相似文献
20.
<正> 1 引言 润滑油在管外环隙间轴向流动时,由于流体粘度大,雷诺数小,一般为层流,光滑管的传热膜系数很低,在本实验范围,Re=300~1000,Pr≈200,油冷却时传热膜系数仅为240~360W/(m~2·℃)。本研究采用花瓣状翅片管强化环隙间润滑油的冷却传热,可有效地扩大传热表面积,并使高粘流体在翅片管三角齿形翅片间轴向绕流到达翅根部,翅间流动死角较小,在本实验范围内,以光坯管面积计的传热膜系数在较好的管参数时可达800~3500W/(m~2·℃)。花瓣状翅片管是对高粘流体较好的一种传热管型。 相似文献