首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of MAG with CLA using Penicillium camembertii mono- and diacylglycerol lipase (referred to as lipase) was attempted for the purpose of expanding the application of CLA. The commercial product of CLA (referred to as FFA-CLA) is a FFA mixture containing almost equal amounts of 9cis,11trans (9c,11t)-CLA and 10t,12c-CLA. Esterification of FFA-CLA with glycerol without dehydration achieved 84% esterification but produced almost equal amounts of MAG and DAG. Esterification with dehydration not only achieved a high degree of esterification but also suppressed the formation of DAG. When a mixture of FFA-CLA/glycerol (1∶2, mol/mol), 1% water, and 200 units/g-mixture of P. camembertii lipase was agitated at 30°C for 72 h with dehydration at 5 mm Hg, the degree of esterification reached 95% and the contents of MAG and DAG were 90 and 6 wt%, respectively. This reaction system may be applied to the industrial production of MAG with unstable CLA.  相似文献   

2.
We attempted to produce MAG of CLA through lipase-catalyzed esterification of a FFA mixture containing CLA (referred to as FFA-CLA) with glycerol. Screening of lipases showed that MAG-CLA was produced efficiently at 5°C with Penicillium camembertii, Rhizopus oryzae, and Candida rugosa lipases. Among them, C. rugosa lipase was selected because the lipase is widely used as a catalyst for oils and fats processing. The reaction was conducted with agitation of a 300-g mixture of FFA-CLA/glycerol (1∶5, mol/mol), a 200-U/g mixture of C. rugosa lipase, and 2% water. When the reaction was conducted at 30°C, the esterification scarcely proceeded, owing to inhibition of the reaction by glycerol. But the reaction at 5°C eliminated the inhibition and produced MAG efficiently: The degree of esterification reached 93.8% after 58 h, and MAG content in the reaction mixture was 88.4 wt%. To reduce the reaction time, the reactor was connected with a vacuum pump after 24 h, and the reaction was continued with dehydration at 5 mm Hg. The degree of esterification reached 94.7% after 24 h of dehydration (48 h in total), and MAG content increased to 93.0 wt%. Candida rugosa lipase acted a little more strongly on cis-9, trans-11 CLA than on trans-10,cis-12 CLA, but the contents of the two isomers in MAG obtained from a 48-h reaction were the same as the contents in FFA-CLA.  相似文献   

3.
TAG (MLM) with medium-chain FA (MCFA) at the 1,3-positions and long-chain FA (LCFA) at the 2-position, and TAG (LMM) with LCFA at the 1(3)-position and MCFA at 2,3(1)-positions are a pair of TAG regioisomers. Large-scale preparation of the two TAG regioisomers was attempted. A commercially available FFA mixture (FFA-CLA) containing 9-cis, 11-trans (9c, 11t)- and 10t,12c-CLA was selected as LCFA, and caprylic acid (C8FA) was selected as MCFA. The MLM isomer was synthesized by acidolysis of acyglycerols (AG) containing two CLA isomers with C8FA: A mixture of AG-CLA/C8 FA (1∶10, mol/mol) and 4 wt% immobilized Rhizomucor miehei lipase was agitated at 30°C for 72 h. The ratio of MLM to total AG was 51.1 wt%. Meanwhile, LMM isomer was synthesized by acidolysis of tricaprylin with FFA-CLA: A mixture of tricaprylin/FFA-CLA (1∶2, mol/mol) and 4 wt% immobilized R. miehei lipase was agitated at 30°C for 24 h. The ratio of LMM to total AG was 51.8 wt%. MLM and LMM were purified from 1,968 and 813 g reaction mixtures by stepwise short-path distillation, respectively. Consequently, MLM was purified to 92.3% with 49.1% recovery, and LMM was purified to 93.2% with 52.3% recovery. Regiospecific analyses of MLM and LMM indicated that the 2-positions of MLM and LMM were 95.1 mol% LCFA and 98.3 mol% C8 FA, respectively. The results showed that a process comprising lipase reaction and short-path distillation is effective for large-scale preparation of high-purity regiospecific TAG isomers.  相似文献   

4.
Production of MAG by a lipase-catalyzed reaction is known to be effective at low temperature. This phenomenon can be explained by assuming that synthesized MAG are excluded from the reaction system because MAG, which have low m.p., are solidified at low temperatures. Consequently, MAG are efficiently accumulated and do not serve as the precursor of DAG. If this hypothesis is correct, the critical temperature for MAG production, defined as the highest temperature at which DAG synthesis is repressed, should depend on the m.p. of the MAG. Esterification of FFA with glycerol using Candida rugosa, Rhizopus oryzae, and Penicillium camembertii lipases produced MAG efficiently at low temperatures. However, Candida lipase showed very low esterification activity at high temperatures (>20°C), and Rhizopus lipase produced not only MAG but also DAG even at low temperatures. Meanwhile, P. camembertii lipase catalyzed synthesis of MAG only from FFA and glycerol at low temperatures, although the enzyme catalyzed synthesis of DAG from MAG in addition to synthesis of MAG at high temperatures. We thus studied the effect of temperature on esterification of C10−C18 FFA with glycerol using Penicillium lipase as a catalyst and determined the critical temperatures for production of MAG. The critical temperature for production of each MAG showed a linear correlation with m.p. of the MAG, which supported the hypothesis. In addition, because the m.p. of MAG are estimated from that of the constituent FA, the optimal temperature for production of MAG can be predicted from the m.p. of the FFA used as a substrate.  相似文献   

5.
In this work we report experimental data regarding the glycerolysis of olive oil using Novozym 435 in tert‐butanol organic system aiming at the production of monoacylglycerols (MAG) and diacylglycerols (DAG). Experiments were performed in batch mode, recording the reaction kinetics and evaluating the effects of temperature, enzyme concentration, tert‐butanol:oil/glycerol volume ratio and using solvent to substrates ratio of 1:1 and 5:1 v/v. Experimental results showed that lipase‐catalyzed glycerolysis in tert‐butanol might be a potential route for the production of high contents of MAG and DAG. The results also showed that it is possible to maximize the production of MAG and/or DAG, depending on the glycerol to oil molar ratio employed in the reactional system. Higher contents of MAG (53 wt%) and DAG (50 wt%) were achieved using glycerol to oil molar ratio of 3:1/6:1 and 0.5:1.5, respectively, both in 8 h of reaction at 70°C, 600 rpm and enzyme concentration of 10 wt%.  相似文献   

6.
The purification of tocopherols and phytosterols (referred to as sterols) from soybean oil deodorizer distillate (SODD) was attempted. Tocopherols and sterols in the SODD were first recovered by short-path distillation, which was named sODD tocopherol/sterol concentrate (SODDTSC). The SODD-TSC contained MAG, DAG, FFA, and unidentified hydrocarbons in addition to the two substances of interest. It was then treated with Candida rugosa lipase to convert sterols to FA steryl esters, acylglycerols to FFA, and FFA to FAME. Methanol (MeOH), however, inhibited esterification of the sterols. Hence, a two-step in situ reaction was conducted: SODDTSC was stirred with 20 wt% water and 200 U/g mixture of C. rugosa lipase at 30°C, and 2 moles of MeOH per mole of FFA was added to the reaction mixture after 16h. The lipase treatment for 40 h in total achieved 80% conversion of the initial sterols to FA steryl esters, complete hydrolysis of the acylglycerols, and a 78% decrease in the initial FFA content by methyl esterification. Tocopherols did not change throughout the process. To enhance the degree of steryl and methyl esterification, the reaction products, FA steryl esters and FAME, were removed by short-path distillation, and the resulting fraction containing tocopherols, sterols, and FFA was treated with the lipase again. Distillation of the reaction mixture purified tocopherols to 76.4% (recovery, 89.6%) and sterols to 97.2% as FA steryl esters (recovery, 86.3%).  相似文献   

7.
We have developed an efficient esterification for the synthesis of triacylglycerol (TAG) containing conjugated linoleic acids (CLA) using a blend of two powdered lipases. Two pairs of blended lipases promoted the esterification. Rhizomucor miehei lipase, plus Alcaligenes sp. lipase and Penicillium cammembertii MAG and DAG lipase plus Alcaligenes sp. lipase were used. At the optmal ratio of two lipases, the content of TAG containing CLA (TAG-CLA) in all glycerols reached 82–83% after 47 h using 1 wt% of lipases. With R. miehei lipase plus Alcaligenes sp. lipase, the reaction time to obtain ca. 60% of TAG-CLA was one-third of that needed with R. miehei lipase alone. The optimal ratio of two lipases differed between these two pairs. The optimal ratio was 70–80 wt% of R. miehei lipase in the last stage of the reaction, whereas it was over a wide range of 10–90 wt% for P. camembertii lipase. In the blend of R. miehei lipase plus Alcaligenes sp. lipase, activity remained very high after 10 cycles of esterification (every 47 h) and could be used in the industrial production of TAG-CLA.  相似文献   

8.
Diacylglycerols (DAG) of conjugated linoleic acid (CLA) were prepared by esterification of glycerol with fatty acids enriched with CLA (FFA–CLA, >95%) in the presence of a novel lipase from Malassezia globosa (SMG1). Lipase SMG1 is strictly specific to mono- and diacylglycerols but not triacylglycerols, which is similar to the properties of lipase from Penicillium camembertii (lipase G 50), but lipase SMG1 showed preference on the production of DAG with the reaction proceeding. Low temperature was beneficial for the conversion of FFA–CLA into acylglycerols, the degree of esterification reached 93.0% when the temperature was 5 °C. The maximum DAG content (53.4%) was achieved at 25 °C. The rate of DAG synthesis increased as the enzyme loading increased. However, at lipase amounts above 240 U/g mixtures, no significant increases in DAG concentration were observed. The molar ratio of FFA–CLA to glycerol and initial water content were optimized to be 1:3 (mol/mol) and 3%. Lipase SMG1 showed no regioselectivity because the contents of 1,3-DAG and 1,2-DAG were 43.1% and 21.2% based on total content of acylglycerols. By calculating the ratio of 9c, 11t-CLA to 10t, 12c-CLA, it was indicated that lipase SMG1 showed a little preference to 10t, 12c-CLA at the sn-1(3) position of monoacylglycerols (MAG), while no selectivity for 9c, 11t-CLA at the sn-2 position of DAG was obviously found.  相似文献   

9.
A commercial product of CLA contains almost equal amounts of cis-9,trans-11 (c9,t11)-CLA and trans-10,cis-12 (t10,c12)-CLA. We attempted to enrich the two isomers by a two-step selective esterification using Candida rugosa lipase that acted on c9,t11-CLA more strongly than on t10,c12-CLA. An FFA mixture containing CLA isomers was esterified with an equimolar amount of lauryl alcohol in a mixture of 20% water and the lipase. When the esterification of total FA reached 50%, two isomers were fractionated in a good yield: t10,c12-CLA was enriched in FFA, and c9,t11-CLA was recovered in lauryl esters. The FFA were esterified again to enrich t10,c12-CLA. At 27.3% esterification of total FA, the t10,c12-CLA content in FFA increased to 64.8 wt% with 89.3% recovery: The ratio of the content of t10,c12-CLA to that of two isomers was 95.9%. Lauryl esters obtained by the single esterification were employed for enrichment of c9,t11-CLA. After the esters were hydrolyzed, the resulting FFA were esterified again with lauryl alcohol. At 62.0% esterification of total FA, the c9,t11-CLA content in lauryl esters increased to 73.3 wt% with 79.4% recovery: The ratio of the content of c9,t11-CLA to that of two isomers was 95.6%. In a 600-g-scale purification, molecular distillation was effective in separating the reaction mixture into lauryl alcohol, FFA, and lauryl ester fractions.  相似文献   

10.
A method was developed for the enrichment of either the cis9,trans11 or the trans10,cis12 isomer of conjugated linoleic acid (CLA) from a synthetic CLA mixture consisting predominantly of these isomers in equal amounts. Lipases were screened for their ability to selectively esterify one isomer at a significantly greater rate than the other isomer. An immobilized lipase from Rhizomucor miehei was nonselective, but a lipase from Geotrichum candidum esterified the cis9,trans11 isomer more rapidly than the trans10,cis12 isomer. This selectivity was exploited at the kilogram scale to prepare an ester fraction with a content of 91% cis9,trans11 CLA and an unreacted free fatty acid fraction consisting of 82% trans10,cis12 CLA, based on total CLA content. The components of the reaction mixture were separated by molecular distillation. Each enriched fraction was then incorporated into palm oil triglycerides by interesterification with the non-selective lipase from R. miehei. Two triglyceride fats resulted, which were enriched in either cis9,trans11 CLA (26.5% cis9,trans11 and 1.7% trans10,cis12) or trans10,cis12 CLA (3.5% cis9,trans11 and 22.9% trans10,cis12).  相似文献   

11.
Acid oil, a by-product of vegetable oil refining, was enzymatically converted to fatty acid methyl esters (FAME). Acid oil contained free fatty acids (FFA), acylglycerols, and lipophilic compounds. First, acylglycerols (11 wt%) were hydrolyzed at 30 °C by 20 units Candida rugosa lipase/g-mixture with 40 wt% water. The resulting oil layer containing 92 wt% FFA was used for the next reaction, methyl esterification of FFA to FAME by immobilized Candida antarctica lipase. A mixture of 66 wt% oil layer and 34 wt% methanol (5 mol for FFA) were shaken at 30 °C with 1.0 wt% lipase. The degree of esterification reached 96% after 24 h. The resulting reaction mixture was then dehydrated and subjected to the second esterification that was conducted with 2.2 wt% methanol (5 mol for residual FFA) and 1.0 wt% immobilized lipase. The degree of esterification of residual FFA reached 44%. The degree increased successfully to 72% (total degree of esterification 99%) by conducting the reaction in the presence of 10 wt% glycerol, because water in the oil layer was attracted to the glycerol layer. Over 98% of total esterification was maintained, even though the first and the second esterification reactions were repeated every 24 h for 40 days. The enzymatic process comprising hydrolysis and methyl esterification produced an oil containing 91 wt% FAME, 1 wt% FFA, 1 wt% acylglycerols, and 7 wt% lipophilic compounds.  相似文献   

12.
Lipase-catalyzed fractionation of conjugated linoleic acid isomers   总被引:14,自引:0,他引:14  
The abilities of lipases produced by the fungus Geotrichum candidum to selectively fractionate mixtures of conjugated linoleic acid (CLA) isomers during esterification of mixed CLA free fatty acids and during hydrolysis of mixed CLA methyl esters were examined. The enzymes were highly selective for cis-9,trans-11–18∶2. A commercial CLA methyl ester preparation, containing at least 12 species representing four positional CLA isomers, was incubated in aqueous solution with either a commercial G. candidum lipase preparation (Amano GC-4) or lipase produced from a cloned high-selectivity G. candidum lipase B gene. In both instances selective hydrolysis of the cis-9,trans-11–18∶2 methyl ester occurred, with negligible hydrolysis of other CLA isomers. The content of cis-9,trans-11–18∶2 in the resulting free fatty acid fraction was between 94 (lipase B reaction) and 77% (GC-4 reaction). The commercial CLA mixture contained only trace amounts of trans-9,cis-11–18∶2, and there was no evidence that this isomer was hydrolyzed by the enzyme. Analogous results were obtained with these enzymes in the esterification in organic solvent of a commercial preparation of CLA free fatty acids containing at least 12 CLA isomers. In this case, G. candidum lipase B generated a methyl ester fraction that contained >98% cis-9,trans-11–18∶2. Geotrichum candidum lipases B and GC-4 also demonstrated high selectivity in the esterification of CLA with ethanol, generating ethyl ester fractions containing 96 and 80%, respectively, of the cis-9,trans-11 isomer. In a second set of experiments, CLA synthesized from pure linoleic acid, composed essentially of two isomers, cis-9,trans-11 and trans-10,cis-12, was utilized. This was subjected to esterification with octanol in an aqueous reaction system using Amano GC-4 lipase as catalyst. The resulting ester fraction contained up to 97% of the cis-9,trans-11 isomer. After adjustment of the reaction conditions, a concentration of 85% trans-10,cis-12–18∶2 could be obtained in the unreacted free fatty acid fraction. These lipase-catalyzed reactions provide a means for the preparative-scale production of high-purity cis-9,trans-11–18∶2, and a corresponding CLA fraction depleted of this isomer.  相似文献   

13.
Acid oil is a by-product in the neutralization step of vegetable oil refining and is an alternative source of biodiesel fuel. A model substrate of acid oil, which is composed of TAG and FFA, was used in experiments on the conversion to FAME by immobilized Candida antarctica lipase. FFA in the mixture of TAG/FFA were efficiently esterified with methanol (MeOH), but the water generated by the esterification significantly inhibited methanolysis of TAG. We thus attempted to convert a mixture of TAG/FFA to FAME by a two-step process comprising methyl esterification of FFA and methanolysis of TAG by immobilized C. antarctica lipase. The first reaction was conducted at 30°C in a mixture of TAG/FFA (1∶1, wt/wt) and 10 wt% MeOH using 0.5 wt% immobilized lipase, resulting in efficient esterification of FFA. The reaction mixture after 24 h was composed of 49.1 wt% TAG, 1.3 wt% FFA, 49.1 wt% FAME, and negligible amounts of DAG and MAG (<0.5 wt%). The reaction mixture was then dehydrated and used as a substrate for the second reaction, which was conducted at 30°C in a solution of the dehydrated mixture and 5.5 wt% MeOH using 6 wt% immobilized lipase. The activity of the lipase increased gradually when the reaction was repeated by transferring the enzyme to a fresh substrate mixture. The activity reached a maximum after 6 cycles, and the content of FAME achieved was >98.5 wt% after a 24-h reaction. The immobilized lipase was very stable in the first-and second-step reactions and could be used for >100 d without significant loss of activity.  相似文献   

14.
CLA is a potent inhibitor of milk fat synthesis, as shown by investigations using mixtures of CLA isomers in FFA form. However, methyl esters of CLA can be initially formed in commercial synthesis, and their use in a supplement has certain manufacturing and cost advantages. Our objective was to compare abomasal infusion of methyl esters of CLA (ME-CLA) and FFA of CLA (FFA-CLA) on milk fat synthesis. Data were also combined with previous investigations to examine broader relationships between trans-10,cis-12 CLA and the reduction in milk fat. Three mid-lactation, rumen-fistulated Holstein cows were used in a 3×3 Latin square design. Treatments were (i) control, (ii) ME-CLA, and (iii) FFA-CLA. The ME-CLA and FFA-CLA treatments (4.2 g/d trans-10,cis-12 CLA) resulted in a comparable reduction in milk fat yield (38 and 39%, respectively) and pattern of reduction in individual FA. In contrast, milk yield, milk protein, and feed intake were unaltered by CLA treatment. Combining data across studies revealed strong correlations relating the reduction in milk fat yield to abomasal dose of trans-10,cis-12 CLA (R 2=0.86), milk fat content of trans-10,cis-12 CLA (R 2=0.93), and milk fat secretion of trans-10,cis-12 CLA (R 2=0.82). Across studies, transfer efficiency of abomasally infused trans-10,cis-12 CLA into milk fat was relatively constant (22%; R 2=0.94). Overall, ME-CLA and FFA-CLA were equally potent in reducing milk fat, and either form could be used to formulate a dietary supplement that would induce milk fat depression.  相似文献   

15.
In this study, diacylglycerols (DAG) were synthesized rapidly (~30 min) in a solvent‐free system via esterification of glycerol with fatty acids (FA, the mixture of 60 wt% palm oil deodorizer distillate and 40 wt% oleic acid) catalyzed by Lipozyme 435 (Novozymes A/S, Copenhagen, Denmark) using a bubble column reactor. The content of DAG, monoacylglycerols (MAG), triacylglycerols (TAG) and free fatty acids (FFA) in the crude product were 57.94 ± 1.60 wt%, 24.68 ± 2.08 wt%, 2.67 ± 1.72 wt% and 14.69 ± 1.22 wt%, respectively under the selected conditions, which were enzyme load of 5.0 wt%, glycerol/FA mole ratio of 7.5, initial water content of 2.5 wt%, reaction temperature of 60 °C, reaction time of 30 min and N2 gas flow of 10.6 cm min?1. The final product containing 91.30 ± 1.10 wt% of DAG was obtained by one‐step molecular distillation at 200 °C. The reusability of Lipozyme 435 was investigated by evaluating the esterification degree (ED) and the DAG content in the crude products in 30 successive runs. The enzyme retained 95.10 % of its original activity during 30 successive runs according to comparison of the ED. The new process showed a very high efficiency in production of DAG with a high purity. The ratio of positional isomers 1,3‐DAG to 1,2 ‐DAG was 2:1 in the final product. The certain plasticity (melting point of 44 °C) and content of unsaturated fatty acids made the product a valuable food ingredient.  相似文献   

16.
Conjugated linoleic acid production from linoleic acid by lactic acid bacteria   总被引:25,自引:0,他引:25  
After screening 14 genera of lactic acid bacteria, Lactobacillus plantarum AKU 1009a was selected as a potential strain for CLA production from linoleic acid. Washed cells of L. plantarum with high levels of CLA production were obtained by cultivation in a nutrient medium with 0.06% (wt/vol) linoleic acid (cis-9,cis-12-octadecadienoic acid). Under the optimal reaction conditions with the free form of linoleic acid as the substrate, washed cells of L. plantarum produced 40 mg CLA/mL reaction mixture (33% molar yield) from 12% (wt/vol) linoleic acid in 108 h. The resulting CLA was a mixture of two CLA isomers, cis-9,trans-11 (or trans-9,cis-11)-octadecadienoic acid (CLA1, 38% of total CLA) and trans-9,trans-11-octadecadienoic acid (CLA2, 62% of total CLA), and accounted for 50% of the total FA obtained. A higher yield (80% molar yield to linoleic acid) was attained with 2.6% (wt/vol) linoleic acid as the substrate in 96 h, resulting in CLA production of 20 mg/mL reaction mixture [consisting of CLA1 (2%) and CLA2 (98%)] and accounting for 80% of total FA obtained. Most of the CLA produced was associated with the cells (ca. 380 mg CLA/g dry cells), mainly as FFA.  相似文献   

17.
Docosahexaenoic acid (DHA)-rich diacylglycerol (DAG)-rich oil was prepared by lipase-catalyzed glycerolysis of microbial oil from Schizochytrium sp. in a solvent-free system. The reaction parameters including lipase type, substrate molar ratio, temperature, lipase concentration, and reaction time were screened. The selected conditions were determined as follows: Novozym® 435 (Novozymes A/S, Bagsvaerd, Denmark) as biocatalyst at 8 wt%, substrate ratio (DHA-rich microbial TAG/glycerol) of 1:1 mol/mol, temperature of 50 °C, and reaction time of 12 hours. Under these conditions, the triacylglycerol (TAG), DAG, and monoacylglycerol (MAG) contents in the product were 36.4%, 48.2%, and 15.4%, respectively. The lipase was reused successively for 18 cycles without significant loss of activity under the conditions given above. Fatty acid composition analysis of the final product showed that the contents of DHA in TAG, DAG, and MAG were 53.9%, 44.9%, and 34.8%, respectively. DHA-rich DAG has the potential to be used as an ingredient in infant formula to increase the bioavailability of DHA.  相似文献   

18.
The aim of this study was to optimize production of MAG by lipase-catalyzed glycerolysis in a tert-pentanol system. Twenty-nine batch reactions consisting of glycerol, sunflower oil, tert-pentanol, and commercially available lipase (Novozym®435) were carried out, with four process parameters being varied: Enzyme load, reaction time, substrate ratio of glycerol to oil, and solvent amount. Response surface methodology was applied to optimize the reaction system based on the experimental data achieved. MAG, DAG, and TAG contents, measured after a selected reaction time, were used as model responses. Well-fitting quadratic models were obtained for MAG, DAG, and TAG contents as a function of the process parameters with determination coefficients (R2) of 0.89, 0.88, and 0.92, respectively. Of the main effects examined, only enzyme load and reaction time significantly influenced MAG, DAG, and TAG contents. Both enzyme amount and reaction time showed a surprisingly nonlinear relationship between factors (process parameters) and responses, indicating a local maximum. The substrate ratio of glycerol to oil did not significantly affect the MAG and TAG contents; however, it had a significant influence on DAG content. Contour plots were used to evaluate the optimal conditions for the complex interactions between the reaction parameters and responses. The optimal conditions established for MAG yield were: enzyme load, 18% (w/w of oil); glycerol/oil ratio, 7∶1 (mol/mol); solvent amount, 500% (vol/wt of oil); and reaction time, 115 min. Under these conditions, a MAG content of 76% (w/w of lipid phase) was predicted. Verification experiments under optimized reaction conditions were conducted, and the results agreed well with the range of predictions.  相似文献   

19.
The yeast Saccharomyces cerevisiae was cultivated in the presence of free CLA that was either a pure trans-10, cis-12 isomer, a pure cis-9, trans-11 isomer, or a 1∶1 mixture of the two, and the influence of these supplementations on the content and FA composition of the lipids in the yeast was determined. Neither the pure isomers nor their 1∶1 mixture influenced the growth of the yeast, but the trans-10, cis-12 isomer reduced the amount of cellular lipids by 40%. The reduction in total cellular lipids by the trans-10, cis-12 CLA was due to a reduction in TAG. Both of the isomers were incorporated into the yeast lipids, reaching a proportion of about 33% in TAG. With the incorporation of CLA, the yeast reduced the amount and desaturation of endogenously synthesized FA. These clear and pronounced isomer-specific effects of CLA on the yeast suggest that yeast might be a useful model to obtain a more comprehensive view of the mechanisms of the action of CLA on lipid metabolism.  相似文献   

20.
Monoacylglycerol (MAG) and diacylglycerol (DAG) are two natural components found in most edible oils and fats. Conventional synthesis of MAG and DAG is usually conducted by glycerolysis of triacylglycerol (TAG) at high temperatures (above 200°C) in the presence of an alkaline catalyst. In this work, the synthesis of MAG and DAG using enzymatic glycerolysis of olive oil was investigated using Tween 80 as surfactant, n-butanol as co-surfactant and the novel lipase in free/liquid formulation Lipozyme TL 100L as catalyst. Experimental design was used to evaluate the effect of enzyme load and reaction temperature on the feedstock conversion. Enzyme load and system temperature were significant variables in the statistical design and the best condition was found at 35°C, 7.5 vol% of Lipozyme TL 100L and glycerol to oil volumetric ratio of 2:1 with conversion of TAG at approximately 98% after 2 h of process. A mathematical model based on the Ping-Pong Bi-Bi mechanism was used to describe the reaction kinetics. The model adequately described the behavior of the system and can be a useful tool for the design of reactors in larger scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号