首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The interaction of DeNOx components comprising NO, NO2, propane, O2 and H2 with a selected Ag/Al2O3 catalyst was studied by in situ FTIR spectroscopy at a fixed temperature where a promoting effect of H2 admixture on the catalytic NOx reduction has been reported to occur. The significant enhancement of nitrato and acetate ad-species from NO and propane, respectively, could be confirmed. New findings are the relative inertness of these species for further reaction progress. Instead, nitrite, nitrito, and nitro species are reactive, and the H2 co-fed favours the formation of those species. Nevertheless, the way H2 interferes with the kind of species formed includes the promotion of oxidative reaction steps evidenced by different effect of H2 on the interaction of the catalyst with NO/O2 and NO2, respectively. During NO2/H2 adsorption adsorbed NOx species and Ag+ ions at the surface are reduced. This prevents abundant formation of stable nitrato species and favour the formation of largely unstable but reactive nitro and nitrito species. Otherwise, NO2 is able to oxidize pre-reduced Ag/Al2O3. Furthermore, indications were found for minor propene formation from propane in the presence of hydrogen.  相似文献   

2.
A new Ag/Al2O3 catalyst for removing NOx in diesel engine exhaust gas was developed. The influence of SO2 on the reduction of lean NOx by ethanol over the Ag/Al2O3 catalyst was evaluated in simulated diesel exhaust and characterized using TPD, XRD, XPS, SEM and BET measurements. The Ag/Al2O3 catalyst was highly active for the reduction of NOx with ethanol in the presence of SO2 although the reduction of NOx is suppressed at lower temperatures. The activity for NOx reduction is high even on the Ag/Al2O3 catalyst exposed to a SO2 (200 ppm)/O2 (10%)/H2O (10%) flow for 20 h at 723 K and comparable to that on the fresh Ag/Al2O3 catalyst. No crystallized Ag metal and Ag compounds were formed by the SO2/O2/H2O exposure. On the other hand, crystallized Ag2SO4 was easily formed when the Ag/Al2O3 catalyst was exposed to a SO2 (200 ppm)/O2 (10%)/NO (800 ppm)/H2O (10%) flow for 10 h at 723 K. XRD, SEM and XPS studies showed that the formation of crystallized Ag2SO4 results in growing of Ag particles in larger size and lowering the surface content of Ag particles. In addition, the specific surface area of the Ag/Al2O3 catalyst decreases from 221 to 193 m2/g. Although the dispersion of Ag particles was decreased by the formation of Ag2SO4, the activity for the reduction of lean NOx was, remarkably, not affected. This suggests that the Ag–alumina sites created by the Ag2SO4 formation are still active for the lean catalytic reduction of NOx. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The NOx desorption profiles obtained in O2–He and n-C10–O2–He were compared on γ-Al2O3 and Ag/γ-Al2O3. On Ag/γ-Al2O3, the low-temperature NOx desorption profiles obtained in n-C10–O2–He were significantly different from those obtained in O2–He. In particular, at 190–220 °C excess release of NO, instead of NO2, was observed concomitantly with n-C10 consumption. This is interpreted as the result of the formation–decomposition of organo-NOx species issued from the interaction of NO2 and hydrocarbons initially chemisorbed on Al2O3 and activated on Ag species, respectively. The occurrence of such a phenomenon at temperatures close to those at which the n-C10-SCR reaction starts provides support for the involvement of the organo-NOx species as intermediates.  相似文献   

4.
The NO x adsorption mechanism on Pt/BaO/Al2O3 catalysts was investigated by performing NO x storage/reduction cycles, NO2 adsorption and NO + O2 adsorption on 2%Pt/(x)BaO/Al2O3 (x = 2, 8, and 20 wt%) catalysts. NO x uptake profiles on 2%\Pt/20%BaO/Al2O3 at 523 K show complete uptake behavior for almost 5 min, and then the NO x level starts gradually increasing with time and it reaches 75% of the inlet NO x concentration after 30 min time-on-stream. Although this catalyst shows fairly high NO x conversion at 523 K, only ~2.4 wt% out of 20 wt% BaO is converted to Ba(NO3)2. Adsorption studies by using NO2 and NO + O2 suggest two different NO x adsorption mechanisms. The NO2 uptake profile on 2%Pt/20%BaO/Al2O3 shows the absence of a complete NO x uptake period at the beginning of adsorption and the overall NO x uptake is controlled by the gas–solid equilibrium between NO2 and BaO/Ba(NO3)2 phase. When we use NO + O2, complete initial NO x uptake occurs and the time it takes to convert ~4% of BaO to Ba(NO3)2 is independent of the NO concentration. These NO x uptake characteristics suggest that the NO + O2 reaction on the surface of Pt particles produces NO2 that is subsequently transferred to the neighboring BaO phase by spill over. At the beginning of the NO x uptake, this spill-over process is very fast and so it is able to provide complete NO x storage. However, the NO x uptake by this mechanism slows down as BaO in the vicinity of Pt particles are converted to Ba(NO3)2. The formation of Ba(NO3)2 around the Pt particles results in the development of a diffusion barrier for NO2, and increases the probability of NO2 desorption and consequently, the beginning of NO x slip. As NO x uptake by NO2 spill-over mechanism slows down due to the diffusion barrier formation, the rate and extent of NO2 uptake are determined by the diffusion rate of nitrate ions into the BaO bulk, which, in turn, is determined by the gas phase NO2 concentration.  相似文献   

5.
A global kinetic model which describes H2‐assisted NH3‐SCR over an Ag/Al2O3 monolith catalyst has been developed. The intention is that the model can be applied for dosing NH3 and H2 to an Ag/Al2O3 catalyst in a real automotive application as well as contribute to an increased understanding of the reaction mechanism for NH3‐SCR. Therefore, the model needs to be simple and accurately predict the conversion of NOx. The reduction of NO is described by a global reaction, with a molar stoichiometry between NO, NH3 and H2 of 1:1:2. Further reactions included in the model are the oxidation of NH3 to N2 and NO, oxidation of H2, and the adsorption and desorption of NH3. The model was fitted to the results of an NH3‐TPD experiment, an NH3 oxidation experiment, and a series of H2‐assisted NH3‐SCR steady‐state experiments. The model predicts the conversion of NOx well even during transient experiments. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4325–4333, 2013  相似文献   

6.
The effect of SO2 for the selective reduction of NO by C3H8 on Ag/Al2O3 was investigated in the presence of excess oxygen and water vapor. The NOx conversion decreased permanently even in the presence of a low concentration of SO2 (0.5–10 ppm) at <773 K. The increase in SO2 concentration resulted in a large decrease in NOx conversion at 773 K. However, when the reaction temperature was more than 823 K, the activity of Ag/Al2O3 remained constant even in the presence of 10 ppm of SO2. The sulfate species formed on the used Ag/Al2O3 were characterized by a temperature programmed desorption method. The sulfated species formed on silver should mainly decrease the deNOx activity on the Ag/Al2O3. The sulfated Ag/Al2O3 was appreciably regenerated by thermal treatment in the deNOx feed at 873 K. The moderate activity remains at 773 K in the presence of 1 ppm SO2 for long time by the heat treatment at every 20 h intervals.  相似文献   

7.
Comparison of barium peroxide, Ba(OH)2 and Ba(NO3)2 as the precursor of BaO for the preparation of NO x -storage BaO/Al2O3 material was carried out. The as prepared materials were calcined at 550 and 800 °C and characterized by N2 physisorption, XRD, Raman and FT-IR spectroscopy. Measurements of the NO x storage performances of these BaO/Al2O3 materials by NO2 adsorption and NO x -TPD experiments showed that the use of barium peroxide as the precursor of BaO inhibited the formation of BaAl2O4 and led to remarkable improvements in the thermal stability as well as NO x storage capacity of the final BaO/Al2O3 material calcined at 800 °C.  相似文献   

8.
The role of the Al2O3 support on the activity of supported Ag catalyst towards the selective catalytic reduction (SCR) of NO with decane is elucidated. A series of Ag/Al2O3 catalysts were prepared by impregnation method and characterized by N2 pore size distribution, XRD, UV–Vis, in-situ FT-IR and acidity measurement by NH3 and pyridine adsorption. The catalytic activity differences of Ag/Al2O3 are correlated with different properties of Al2O3 supports and the active Ag species formed. 4wt% Ag supported on sol-gel prepared Al2O3 (Ag/Al2O3 (SG), showed higher NO x conversion (65% at 400 °C), compared with the respective catalysts made from commercial Al2O3 (Ag/Al2O3 (GB), Ag/Al2O3 (ALO), (∼26 and 7% at 400 °C). The higher surface area, acidity and pore size distribution in sol–gel prepared Al2O3 (SG) results in higher NO and hydrocarbon conversion. Based on the UV–vis characterization, the activity of NO reduction is correlated to the presence of Agnδ+ clusters and acidity of Al2O3 support was found to be one of the important parameter in promoting the formation and stabilization of Agnδ+ clusters. Furthermore from pyridine adsorption results, presence of more number of Bronsted acid sites in Ag/Al2O3 (SG) is confirmed, which could also contribute to low temperature hydrocarbon activation and improve NO conversion. In situ FT-IR measurements revealed the higher rate of –CN and –NCO intermediate species formation over 4wt% Ag/Al2O3 (SG). We conclude that the physico–chemical properties of Al2O3 play a crucial role in NO x conversion over Ag/Al2O3 catalysts. Thus, the activity of the Ag/Al2O3 catalyst can be tailored by using a proper type of Al2O3 support.  相似文献   

9.
Mesoporous and nanosized cobalt aluminate spinel with high specific surface area was prepared using microwave assisted glycothermal method and used as soot combustion catalyst in a NOx + O2 stream. For comparison, zinc aluminate spinel and alumina supported platinum catalysts were prepared and tested. All samples were characterised using XRD, (HR)TEM, N2 adsorption–desorption measurements. The CoAl2O4 spinel was able to oxidise soot as fast as the reference Pt/Al2O3 catalyst. Its catalytic activity can be attributed to a high NOx chemisorption on the surface of this spinel, which leads to the fast oxidation of NO to NO2.  相似文献   

10.
Ag/Al2O3 catalysts with 1 wt% SiO2 or TiO2 doping in alumina support have been prepared by wet impregnation method and tested for sulphur tolerance during the selective catalytic reduction (SCR) of NOx using propene under lean conditions. Ag/Al2O3 showed 44% NOx conversion at 623 K, which was drastically reduced to 21% when exposed to 20 ppm SO2. When Al2O3 support in Ag/Al2O3 was doped with 1 wt% SiO2 or TiO2 the NOx conversion remained constant in presence of SO2 showing the improved sulphur tolerance of these catalysts. Subsequent water addition does not induce significant deactivation. On the contrary, a slight promotional effect on the activity of NO conversion to nitrogen is observed after Si and Ti incorporation. FTIR study showed the sulphation of silver and aluminum sites of Ag/Al2O3 catalysts resulting in the decrease in the formation of reactive intermediate species such as –NCO, which in turn decreases NOx conversion to N2. In the case of Ag/Al2O3 doped with SiO2 or TiO2, formation of silver sulphate and aluminum sulphate was drastically reduced, which was evident in FTIR resulting in remarkable improvement in the sulphur tolerance of Ag/Al2O3 catalyst. These catalysts before and after the reaction have been characterized with various techniques (XRD, BET surface area, transmittance FTIR and pyridine adsorption) for physico-chemical properties.  相似文献   

11.
The influence of the addition of W to Al2O3, promoted or not by Ag, on the n-C10 SCR of NO x was investigated. It was shown that the addition of W was detrimental to the n-C10 SCR reaction. Based on the NO x -TPD, the XPS and the n-C10 SCR measurements, it was concluded that the loss of activity observed at temperatures lower than 400 °C on the Ag/W(5)–Al2O3 catalyst compared with the Ag/Al2O3 sample is likely due to the preferential deposition of Ag on the tungstate phase, making it inactive for the n-C10 SCR reaction which requires the active silver species to be in close contact with the Al2O3. At higher temperatures, the occupation, by the tungstates, of the Al2O3 sites responsible for the n-C10-SCR reaction is proposed to be an additional drawback accounting for the detrimental effect of W on Al2O3-supported catalysts promoted or not by Ag.  相似文献   

12.
To understand the effect of H2 on the selective catalytic reduction of NOx with C2H5OH over Ag/Al2O3, surface intermediates were examined using in situ DRIFTS spectra, and by-products were identified using GC–MS. Results showed that H2 addition promoted the partial oxidation of C2H5OH to form enolic species, and enhanced the reaction of NCO with NO + O2 at low temperature. We propose that the enhancement of the enolic species was the main contributor in accelerating NOx reduction under the presence of H2 over Ag/Al2O3 at low temperatures.  相似文献   

13.
Catalytic activity for NO reduction with propene was investigated at 0–80 ppm SO2. NO was reduced more efficiently by propene on SO2-treated than untreated catalyst. Simultaneously, combustion of reductant was observed to lower NO reduction efficiency. Thus, the role of surface-adsorbed SO x species was regarded as depressing reductant combustion. NH3 adsorption revealed that SO2 treatment increased Bronsted acidity of the Ag/Al2O3 catalyst, which promoted propene activation. Reductant activation is a more important step, compared with NO activation to oxidative nitrate species. The NCO species, an index intermediate in NO x reduction, was produced on SO2-adsorbed Ag/Al2O3 at a lower temperature (473 K) than on the untreated catalyst. The reductive intermediates at low temperature are suggested to be alcohol, or aldehyde-adsorbed species, based on observed C=O band.  相似文献   

14.
Low-temperature active Ag/Al2O3 and high-temperature active Fe-BEA zeolite were combined and tested for H2-assisted NH3-selective catalytic reduction (SCR) of NO x . The catalysts were either washcoated onto separate monoliths that were placed up- or downstream of each other (dual-brick layout) or washcoated on top of each other in a sandwiched layout (dual-layer). Our results showed that it is highly preferred to have Ag/Al2O3 as the upstream or outer layer catalyst. Fe-BEA showed a high NH3 oxidation giving an NH3 deficit over the Ag/Al2O3. Ag/Al2O3 formed NO2 which enhanced the activity over Fe-BEA through the “fast”-SCR reaction when Fe-BEA was placed downstream or as inner layer. When no H2, which is needed for the SCR reaction over Ag/Al2O3, was added, the dual-layer layout was preferred. The shorter diffusion distance between the layers is a probable explanation.  相似文献   

15.
Catalysts for NOx storage–reduction (NSR) were made selectively with Pt on either the Al- or the Ba-components without altering significantly the Al2O3 or BaCO3 crystal sizes, Al/Ba weight ratio, specific surface area, porosity, and Pt dispersion using a two-nozzle flame spray pyrolysis (FSP) unit. The NOx storage performance at 300 °C was best for Pt located near Al2O3 as it facilitates the oxidation of NO to NO2 during the fuel lean period but the reduction rate during the subsequent short fuel rich period was much slower resulting in incomplete regeneration. This contributed to a gradual decrease of the NOx conversion at increasing cycling. In contrast, Pt on BaCO3 resulted in an initially lower NOx storage rate but during ten storage–reduction cycles a stable NOx conversion of about 50% was reached. When using NO2 instead of NO or higher NOx oxidation-reduction temperatures (e.g. 350 °C) the Pt location did not affect the NSR performance of the Pt/Ba/Al2O3 catalysts.  相似文献   

16.
The H2/NO/O2 reaction under lean-burn conditions has been studied by means of in situ DRIFTS, reactor measurements and temperature-programmed desorption with the aim of understanding the very different behavior of Pd/TiO2 and Pd/Al2O3 catalysts. The former deliver very high NO x conversions (70-80%) with good N2 selectivity whereas the latter show very low activity. In addition, PdTiO2 exhibits two distinct NO x reduction pathways, thus greatly extending the useful temperature range. It is shown that the PdTiO2 low-temperature channel involves adsorption and subsequent dissociation of NO on reduced (Pd0) metal sites. The low activity of PdAl2O3 is a consequence of palladium remaining in an oxidized state under reaction conditions. The high-temperature NO reduction channel found with PdTiO2 is associated with the generation and subsequent reaction of NH x species.  相似文献   

17.
《Fuel》2007,86(10-11):1577-1586
The NO2, NO (O2) adsorption and temperature programmed desorption (TPD) were studied systematically to probe into the selective catalytic reduction of NO by methane (CH4–SCR) over CoH-ZSM-5 (SiO2/Al2O3 = 25, Co/Al = 0.132–0.312). Adsorption conditions significantly affect the adsorption of NO, NO2 and NO + O2. Adsorbed NO species are unstable and desorbed below the reactive temperature 523 K. Increasing adsorption temperature results in the decrease of the adsorbed NO species amount. The amount of –NOy species formed from NO2 adsorption increases with the increase of NO2 concentration in the adsorption process, while decreases significantly with the increase of adsorption temperature. Though NO species are adsorbed weakly on CoH-ZSM-5, competitive adsorption between NO and –NOy species decreases the amount of adsorbed –NOy species. Similar desorption profiles of NO2 were obtained over CoH-ZSM-5 while they were contacted with NO2 or NO + O2 followed by TPD. If NO2 was essential to form adsorbed –NOy species, the amount of adsorbed –NOy species for NO + O2 adsorption should be the least among the adsorptions of NO2, NO + O2 and NO + NO2 because of the lowest NO2 concentration and highest NO concentration. In fact, the amount of adsorbed –NOy species is between the other two adsorption processes. These indicate that the formation of adsorbed –NOy species may not originate from NO2.  相似文献   

18.
The spray decomposition method with lanthanum nitrate, manganese nitrate, silver nitrate and citric acid was used to synthesize Ag- and Mn-incorporated perovskites. The resulting samples were characterized by X-ray diffraction, BET adsorption measurement, X-ray photoelectron spectroscopy, and temperature-programmed oxygen desorption (O2-TPD) measurement. The obtained composite Ag/MnOx/perovskites catalysts exhibit higher activity by a few orders of magnitude at 338 K than that of LaMnO3. From the O2-TPD measurement, the high activity of the Ag/MnOx/perovskites may result from the increase of weak oxygen adsorption below 373 K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The role of hydrogen in H2-assisted HC–SCR of NO x over Ag–Al2O3 is investigated by XPS and in situ DRIFT spectroscopy. Hydrogen does not reduce the surface silver species to metallic silver, however direct reduction of surface nitrates by hydrogen is observed. It is proposed that one important role of hydrogen is the removal of nitrates from the Ag–Al2O3 surface.  相似文献   

20.
Castoldi  L.  Nova  I.  Lietti  L.  Tronconi  E.  Forzatti  P. 《Topics in Catalysis》2007,42(1-4):189-193
The study of the gas-phase NO reduction by H2 and of the stability/reactivity of NO x stored over Pt–Ba/Al2O3 Lean NO x Trap systems allowed to propose the occurrence of a reduction process of the stored nitrates occurring via to a Pt-catalyzed surface reaction which does not involve, as a preliminary step, the thermal decomposition of the adsorbed NO x species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号