共查询到20条相似文献,搜索用时 15 毫秒
1.
Alex McGlasson;Eva Morgenthaler;Laura C. Bradley;Thomas P. Russell; 《Advanced functional materials》2024,34(11):2306651
It has been shown both theoretically and experimentally that amphiphilic Janus particles are the most effective solid surfactants to stabilize interfaces. In most cases, the Janus particles investigated have uniform morphologies with Janus boundaries dividing the particle into halves. However, there are many examples of Janus particles where the hydrophilic and hydrophobic domains are not equally distributed. The effects of this uneven domain distribution on the mechanism and kinetics of Janus particle assembly, and final equilibrium state are not well-understood. Dynamic pendant drop tensiometry offers a means to probe both the equilibrium assembly and the kinetics and mechanism of assembly. Here, the interfacial kinetics and assembly of spherical anisotropic Janus particles are investigated using dynamic pendant drop tensiometry. Systematic studies quantifying the time-dependent interfacial behavior as a function of Janus particle morphology, chemical composition, particle concentration, and NaOH and HCl concentration are performed. These studies shed light on the assembly mechanism of more complex Janus particle morphologies and highlight their effectiveness as interface stabilizers. 相似文献
2.
Superoleophobic/superhydrophilic surfaces have incomparable advantages for oil–water separation and oil droplet manipulation; however, such surfaces are difficult to obtain on the basis of surface tension theory, and existing attempts are either not fully functional or are nondurable. Here, a solution to achieve the combination of superoleophobicity and superhydrophilicity by emphasizing the polar component of surface tension is proposed. The developed surfaces can be flexibly applied to almost any solid substrate and exhibit superoleophobic and instantaneous superhydrophilic property. The surfaces applied to certain substrates can be used for controllable oil transport, oil–water separation, and emulsion demulsification. Furthermore, a novel ferroconcrete‐like structure to substantially increase the durability of the developed surfaces without affecting the superwettability is developed. The coated steel meshes preserve the ability of the material to separate oil–water mixtures even after over 400 m abrasion, which can be a significant step toward its widespread application. 相似文献
3.
4.
Oil–water separation is a worldwide subject because of the increasing demands in numerous applications, involving separation of immiscible products from chemical reaction systems in synthetic industry. Owing to the limitations of low efficiency, high energy consumption, and multiple operations in conventional methods, membranes with special wettability have been widely developed in recent years to effectively separate various oil–water systems. However, few works on treating chemical reaction systems have been reported because of the lack of stability of current membranes in harsh environments, especially during long‐term work. Herein, a continuous in situ separation of chemical reaction systems based on a special wettable porous polytetrafluoroethylene membrane is successfully conducted. The membrane possesses (1) an intrinsic (with no modification) special wettability of highly hydrophobic/oleophilic in air and superoleophilic under water and 2) an excellent long‐term durability in acidic, alkaline, saline, organic, or heating environments. The in situ separation process exhibits both large separation flux (>3500 L m?2 h?1) and high product purity (>99.00%) by continuously filtering synthetic products without interrupting chemical reactions, which is of great significance in industrial fields. 相似文献
5.
Amphiphilic Janus particles feature the combination of two different functional materials in one single colloid, as well as the possibility of self‐assembly at interfaces into complex superstructures. In this article, the self‐assembly of dual temperature responsive amphiphilic Janus particles at liquid–liquid interfaces and their subsequent conversion into an actuating layer‐shaped surface are presented. These microparticles are produced in a capillaries based continuous flow microfluidic device by photoinitiated radical polymerization. The hydrophobic part of the Janus particles contains a liquid crystalline elastomer (LCE), which performs a strong actuation up to 95% during the nematic–isotropic phase transition. The other side consists of a p(NIPAAm) hydrogel, which features volumetric expansions up to 280% below the lower critical solution temperature. A multistep molding process is developed to uniformly align the Janus particles at a toluene/water boundary surface and to embed the particles into a hydrogel matrix. A particle covered hydrogel layer is obtained, which features a collective actuation of the rod‐like LCE parts on the surface and a bundling of the resulting forces during the phase transition. 相似文献
6.
Developing sponge materials integrating excellent flame retardancy, multitasking separation performance, and efficient emulsion‐breaking ability is significant but challenging for the remediation of oil spills causing fires and environmental damages. Herein, a superhydrophobic oil–water separation sponge material, containing a melamine‐formaldehyde (MF) sponge substrate, magnetic polydopamine (PDA) coating, and branched polydimethylsiloxane (PDMS) brush, through dopamine‐mediated surface initiated atom transfer radical polymerization (SI‐ATRP) is fabricated. The synergistic flame resistance of the MF substrate and PDMS brush significantly improves its adaptability in fire. More importantly, the decorated PDMS brushes can effectively overcome the size mismatch between sponge macropores and tiny emulsified droplets, while remaining the intrinsic macroporous characteristic. When treating W/O emulsions, the PDMS brushes stretch up to act as “interface‐breaking blades” to accelerate the coalescence of emulsified water droplets. Meanwhile, such PDMS brushes can serve as “oil‐trapping tentacles” to efficiently capture oil droplets when treating O/W emulsions. Such material design synergistically contributes to satisfactory separation efficiency (98.7%) and ultrahigh permeation flux (up to 1.35 × 105 L m?2 h?1), even for treating high viscosity emulsions. Besides, the reported sponge also inherits robust durability, superior recyclability, and convenient magnetic collection. These features make the sponge promising for multitasking and highly efficient oil–water separation. 相似文献
7.
Sangyeul Hwang Trung Dac Nguyen Srijanani Bhaskar Jaewon Yoon Marvin Klaiber Kyung Jin Lee Sharon C. Glotzer Joerg Lahann 《Advanced functional materials》2020,30(26)
Magnetic Janus particles (MJPs) have received considerable attention for their rich assembly behavior and their potential technological role in applications ranging from simple magnetophoretic displays to smart cloaking devices. However, further progress is hampered by the lack of predictive understanding of the cooperative self‐assembly behavior of MJPs and appropriate dynamic control mechanisms. In this paper, a detailed experimental and theoretical investigation into the magnetically directed spatiotemporal self‐assembly and switching of MJPs is presented. For this purpose, a novel type of MJPs with defined hemispherical compartments carrying superparamagnetic iron oxide nanoparticles as well as a novel simulation model to describe their cooperative switching behavior is established. Combination of the theoretical and experimental work culminates in a simple method to direct assemblies of MJPs, even at high particle concentrations. In addition, a magnetophoretic display with switchable MJPs is developed on the basis of the theoretical findings to demonstrate the potential usefulness of controlled large‐area assemblies of magnetic Janus particles. 相似文献
8.
Jun‐Bing Fan Yongyang Song Shutao Wang Jingxin Meng Gao Yang Xinglin Guo Lin Feng Lei Jiang 《Advanced functional materials》2015,25(33):5368-5375
The separation of oil–water mixtures in highly acidic, alkaline, and salty environment remains a great challenge. Simple, low‐cost, efficient, eco‐friendly, and easily scale‐up processes for the fabrication of novel materials to effective oil–water separation in highly acidic, alkaline, and salty environment, are urgently desired. Here, a facile approach is reported for the fabrication of stable hydrogel‐coated filter paper which not only can separate oil–water mixture in highly acidic, alkaline, and salty environment, but also separate surfactant‐stabilized emulsion. The hydrogel‐coated filter paper is fabricated by smartly crosslinking filter paper with hydrophilic polyvinyl alcohol through a simple aldol condensation reaction with glutaraldehyde as a crosslinker. The resultant multiple crosslinked networks enable the hydrogel‐coated filter paper to tolerate high acid, alkali, and salt up to 8 m H2SO4, 10 m NaOH, and saturated NaCl. It is shown that the hydrogel‐coated filter paper can separate oil–water mixtures in highly acidic, alkaline, and salty environment and oil‐in‐water emulsion environment, with high separation efficiency (>99%). 相似文献
9.
Given the increasing environmental and energy issues, materials with the ability to repair themselves following damage are highly desirable because this self‐healing property can prolong the lifespan of materials and reduce replacement costs. Host–guest assemblies are a powerful approach to create supramolecular materials with versatile functions. Here, a new mode of radical polymerization is demonstrated which is achieved via magnetocaloric effect to fabricate novel host–guest supramolecular gels within 5 min. The resulting gels can repair themselves spontaneously when damaged, without the assistance of any external stimuli, and possess great mechanical strength. Moreover, the Fe3O4‐doped supramolecular gels show accelerated self‐healing (from 24 h to 3 h) under an applied magnetic field, which is attributed to the synergy between host–guest healing and a magnetocaloric effect. This strategy might open a promising avenue for accelerating the use of host–guest assemblies to rapidly build robust materials. 相似文献
10.
11.
12.
Aerogels are considered ideal candidates for various applications, because of their low bulk density, highly porous nature, and functional performance. However, the time intensive nature of the complex fabrication process limits their potential application in various fields. Recently, incorporation of a fibrous network has resulted in production of aerogels with improved properties and functionalities. A facile approach is presented to fabricate hybrid sol–gel electrospun silica‐cellulose diacetate (CDA)‐based nanofibers to generate thermally and mechanically stable nanofiber aerogels. Thermal treatment results in gluing the silica‐CDA network strongly together thereby enhancing aerogel mechanical stability and hydrophobicity without compromising their highly porous nature (>98%) and low bulk density (≈10 mg cm?3). X‐ray photoelectron spectroscopy and in situ Fourier‐transform infrared studies demonstrate the development of strong bonds between silica and the CDA network, which result in the fabrication of cross‐linked structure responsible for their mechanical and thermal robustness and enhanced affinity for oils. Superhydrophobic nature and high oleophilicity of the hybrid aerogels enable them to be ideal candidates for oil spill cleaning, while their flame retardancy and low thermal conductivity can be explored in various applications requiring stability at high temperatures. 相似文献
13.
Wei Zhu Guolei Xiang Jin Shang Jimin Guo Benyamin Motevalli Paul Durfee Jacob Ongudi Agola Eric N. Coker C. Jeffrey Brinker 《Advanced functional materials》2018,28(16)
A novel strategy for the versatile functionalization of the external surface of metal‐organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic‐inspired lipid molecule DPGG (1,2‐dipalmitoyl‐sn‐glycero‐3‐galloyl) with metal nodes/sites surrounding MOF surface. X‐ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH‐responsive nature of metal‐phenol complexation, the modification process is reversible by simple washing in weak acidic water, showing an excellent regeneration ability for water‐stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation‐induced interfacial assembly conducted on an air/water interface. Finally, the easy fusion of a second functional layer onto DPGG‐modified MOF cores, enabled a series of MOF‐based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so‐called protocells), polyhedral core‐shell structures, hybrid lipid‐modified‐plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications. 相似文献
14.
Drug Delivery: Polylactide‐block‐Polypeptide‐block‐Polylactide Copolymer Nanoparticles with Tunable Cleavage and Controlled Drug Release (Adv. Funct. Mater. 26/2014)
下载免费PDF全文

Robert Dorresteijn Nils Billecke Mischa Schwendy Sabine Pütz Mischa Bonn Sapun H. Parekh Markus Klapper Klaus Müllen 《Advanced functional materials》2014,24(26):4025-4025
15.
Robert Dorresteijn Nils Billecke Mischa Schwendy Sabine Pütz Mischa Bonn Sapun H. Parekh Markus Klapper Klaus Müllen 《Advanced functional materials》2014,24(26):4026-4033
A versatile nanoparticle system is presented in which drug release is triggered by enzymatic polymer cleavage, resulting in a physicochemical change of the carrier. The polylactide‐block‐peptide‐block‐polylactide triblock copolymer is generated by initiation of the ring‐opening polymerization of L‐lactide with a complex bifunctional peptide having an enzymatic recognition and cleavage site (Pro‐Leu‐Gly‐Leu‐Ala‐Gly). This triblock copolymer is specifically bisected by matrix metalloproteinase‐2 (MMP‐2), an enzyme overexpressed in tumor tissues. Triblock copolymer nanoparticles formed by nonaqueous emulsion polymerization are readily transferred into aqueous media without aggregation, even in the presence of blood serum. Cleavage of the triblock copolymer leads to a significant decrease of the glass transition temperature (Tg) from 39 °C to 31 °C, likely mediating cargo release under physiological conditions. Selective drug targeting is demonstrated by hampered mitosis and increased cell death resulting from drug release via MMP‐2 specific cleavage of triblock copolymer carrier. On the contrary, nanocarriers having a scrambled (non‐recognizable) peptide sequence do not cause enhanced cytotoxicity, demonstrating the enzyme‐specific cleavage and subsequent drug release. The unique physicochemical properties, cleavage‐dependent cargo release, and tunability of carrier bioactivity by simple peptide exchange highlight the potential of this polymer‐nanoparticle concept as platform for custom‐designed carrier systems. 相似文献
16.
Guang-Jin Zhao Lu-Lu Li Hai-Qi Gao Zhi-Jian Zhao Zi-Fan Pang Chun-Lei Pei Zhou Qu Liang-Liang Dong De-Wei Rao Jürgen Caro Hong Meng 《Advanced functional materials》2024,34(18):2313026
Efficient thin film composite polyamide (PA) membranes require optimization of interfacial polymerization (IP) process. However, it is challengeable owing to its ultrafast reaction rate coupled with mass and heat transfer, yielding heterogeneous PA membranes with low performance. Herein, a non-isothermal-controlled IP (NIIP) method is proposed to fabricate a highly permeable and selective PA membrane by engineering IP at the cryogenic aqueous phase (CAP) to achieve synchronous control of heat and mass transfer in the interfacial region. The CAP also enables the phase transition of the aqueous solution from the liquid to solid state, providing a more comprehensive understanding of the fundamental mechanisms involved in different phase states in the IP process. Consequently, the PA membrane exhibits excellent separation performance with ultrahigh water permeance (42.9 L m−2 h−1 bar−1) and antibiotic desalination efficiency (antibiotic/NaCl selectivity of 159.3). This study provides new insights for the in-depth understanding of the precise mechanism linking IP to the performance of the targeting membrane. 相似文献
17.
Rui Tang Shujie Zhou Caixia Li Ran Chen Luyuan Zhang Zhiwei Zhang Longwei Yin 《Advanced functional materials》2020,30(19)
MXene materials have attracted increasing attention in electrochemical energy‐storage applications while MXene also becomes photo‐active at the quantum dot scale, making it an alternative for solar‐energy‐conversion devices. A Janus‐structured cobalt‐nanoparticle‐coupled Ti3C2 MXene quantum dot (Co‐MQD) Schottky catalyst with tunable cobalt‐loading content serving as a photoelectrochemical water oxidation photoanode is demonstrated. The introduction of cobalt triggers concomitant surface‐plasmon effects and acts as a water oxidation center, enabling visible‐light harvesting capability and improving surface reaction kinetics. Most importantly, due to the rectifying effects of Co‐MQD Schottky junctions, photogenerated carrier separation/injection efficiency can be fundamentally facilitated. Specifically, Co‐MQD‐48 exhibits both superior photoelectrocatalysis (2.99 mA cm?2 at 1.23 V vs RHE) and charge migration performance (87.56%), which corresponds to 194% and 236% improvement compared with MQD. Furthermore, excellent photostability can be achieved with less than 6.6% loss for 10 h cycling reaction. This fills in gaps in MXene material research in photoelectrocatalysis and allows for the extension of MXene into optical‐related fields. 相似文献
18.
Janna N. Sloand Tyler E. Culp Nichole M. Wonderling Enrique D. Gomez Scott H. Medina 《Advanced functional materials》2021,31(40):2104223
Nature has evolved several elegant strategies to organize inert building blocks into adaptive supramolecular structures. Favored among these is interfacial self-assembly, where the unique environment of liquid–liquid junctions provides structural, kinetic, thermodynamic, and chemical properties that are distinct from the bulk solution. Here, antithetical fluorous–water interfaces are exploited to guide the assembly of non-canonical fluorinated amino acids into crystalline mechanomorphogenic films. That is, the nanoscale order imparted by this strategy yields self-healing materials that can alter their macro-morphology depending on exogenous mechanical stimuli. Additionally, like natural biomolecules, organofluorine amino acid films respond to changes in environmental ionic strength, pH, and temperature to adopt varied secondary and tertiary states. Complementary biophysical and biochemical studies are used to develop a model of amino acid packing to rationalize this bioresponsive behavior. Finally, these films show selective permeability, capturing fluorous compounds while allowing the free diffusion of water. These unique capabilities are leveraged in an exemplary application of the technology to extract perfluoroalkyl substances from contaminated water samples rapidly. Continued exploration of these materials will advance the understanding of how interface-templated and fluorine-driven assembly phenomenon a can be co-utilized to design adaptive molecular networks and living matter. 相似文献
19.
Shili Gai Piaoping Yang Chunxia Li Wenxin Wang Yunlu Dai Na Niu Jun Lin 《Advanced functional materials》2010,20(7):1166-1172
The synthesis (by a facile two‐step sol–gel process), characterization, and application in controlled drug release is reported for monodisperse core–shell‐structured Fe3O4@nSiO2@mSiO2@NaYF4: Yb3+, Er3+/Tm3+ nanocomposites with mesoporous, up‐conversion luminescent, and magnetic properties. The nanocomposites show typical ordered mesoporous characteristics and a monodisperse spherical morphology with narrow size distribution (around 80 nm). In addition, they exhibit high magnetization (38.0 emu g?1, thus it is possible for drug targeting under a foreign magnetic field) and unique up‐conversion emission (green for Yb3+/Er3+ and blue for Yb3+/Tm3+) under 980 nm laser excitation even after loading with drug molecules. Drug release tests suggest that the multifunctional nanocomposites have a controlled drug release property. Interestingly, the up‐conversion emission intensity of the multifunctional carrier increases with the released amount of model drug, thus allowing the release process to be monitored and tracked by the change of photoluminescence intensity. This composite can act as a multifunctional drug carrier system, which can realize the targeting and monitoring of drugs simultaneously. 相似文献
20.
Panbo Liu Sai Gao Guozheng Zhang Ying Huang Wenbin You Renchao Che 《Advanced functional materials》2021,31(27):2102812
Rational manipulation of hollow structure with uniform heterojunctions is evolving as an effective approach to meet the lightweight and high-performance microwave absorption for metal-organic frameworks (MOFs) derived absorbers. Herein, a new and controlled synergistic protecting-etching strategy is proposed to construct shelled ZIF-67 rhombic dodecahedral cages using tannic acid under theoretical guidance, then hollow Co@N-doped carbon nanocages with uniform heterojunctions and hierarchical micro-meso-macropores are obtained via a pyrolysis process, which addresses the shortcomings of using sacrificing templates or corrosive agents. The outer Co@N-doped carbon shell, composed of highly dispersive core-shell heterojunctions, possesses micro-mesopores while the inner hollow macroporous cavity endows the absorbers with lightweight characteristics. Accordingly, the maximum reflection loss is −60.6 dB at 2.4 mm and the absorption bandwidth reaches 5.1 GHz at 1.9 mm with 10 wt% filler loading, exhibiting superior specific reflection loss compared with the vast majority of previous MOFs derived absorbers. Furthermore, this synergistic protecting-etching strategy provides inspiration for precisely creating a hollow void inside other MOFs crystals and broadens the desirable candidates for lightweight and high-efficient microwave absorbers. 相似文献