首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Determining and controlling the inter‐component excitation conversion in light‐emitting nanocomposite materials is a key factor for predicting the composite luminescence properties and for the operation of many opto‐electronic devices. Here we present an extensive study of the inter‐component energy transfer in the composite system given by ZnO particles interacting with the conjugated polymer, poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene]. The composite emission is studied upon varying the acceptor concentration, and the system temperature in the range 50–300 K. The temperature dependence of the energy transfer rate is described by a rate model, taking into account the temperature dependence of the single components nonradiative decay rates, and a dipole–surface interaction scheme in the hybrid material. The proposed model accounts very well for the experimental observation of energy transfer and can be used to predict the temperature behavior of the emission from light‐emitting nanocomposite materials.  相似文献   

2.
The interfacial electronic structure between oxide thin films and organic semiconductors remains a key parameter for optimum functionality and performance of next‐generation organic/hybrid electronics. By tailoring defect concentrations in transparent conductive ZnO films, we demonstrate the importance of controlling the electron transfer barrier at the interface with organic acceptor molecules such as C60. A combination of electron spectroscopy, density functional theory computations, and device characterization is used to determine band alignment and electron injection barriers. Extensive experimental and first principles calculations reveal the controllable formation of hybridized interface states and charge transfer between shallow donor defects in the oxide layer and the molecular adsorbate. Importantly, it is shown that removal of shallow donor intragap states causes a larger barrier for electron injection. Thus, hybrid interface states constitute an important gateway for nearly barrier‐free charge carrier injection. These findings open new avenues to understand and tailor interfaces between organic semiconductors and transparent oxides, of critical importance for novel optoelectronic devices and applications in energy‐conversion and sensor technologies.  相似文献   

3.
It is commonly believed that the work‐function reduction effect of the cathode interfacial material in organic electronic devices leads to better energy‐level alignment at the organic/electrode interface, which enhances the device performance. However, there is no agreement on the exact dipole direction in the literature. In this study, a peel‐off method to reveal the buried organic/metal interface to examine the energy‐level alignment is developed. By splitting the device at different interfaces, it is discovered that oppositely oriented dipoles are formed at different surfaces of the interfacial layer. Moreover, the function of the electrode interface differs in different device types. In organic light‐emitting diodes, the vacuum‐level alignment generally occurs at the organic/cathode interface, while in organic photovoltaic devices, the Fermi‐level pinning commonly happens. Both are determined by the integer charge‐transfer levels of the organic materials and the work‐function of the electrode. As a result, the performance enhancement by the cathode interfacial material in organic photovoltaic devices cannot be solely explained by the energy‐level alignment. The clarification of the energy‐level alignment not only helps understand the device operation but also sets up a guideline to design the devices with better performance.  相似文献   

4.
A strain modulated solar‐blinded photodetector (PD) based on ZnO‐Ga2O3 core–shell heterojuction microwire is developed. This PD is highly sensitive to deep UV light centered at 261 nm. It performs ultrahigh sensitivity and spectral selectivity, which can response to rare weak deep UV light (≈1.3 µw cm?2) and almost no response to visible light wavelength ranges. Moreover, by using the piezo‐phototronic effect, the deep UV current response is enhanced to about three times under ?0.042% static strain. This is a three way coupling effect among pizoelectric polarization, simiconductor properties, and optical excitation, which exists in noncentral symmetric wurtzite semiconductors such as ZnO, GaN, and CdS. By modulating the energy band diagrams and charge carriers in the junction area upon straining, the optoelectronic processes are regulated. The strain induced piezopotential modulates carrier transport in the heterostructure, which improves the response of the PD, with potential applications for health monitoring, smart systems, deep space exploration, and security communication.  相似文献   

5.
A facile one‐step process for the fabrication of hybrid ZnO–dye hollow spheres with novel optical properties has been discovered. Addition of Evans blue (EB) dye to cetyltrimethylammonium bromide (CTAB) results in the formation of CTAB‐EB micelles through an ionic self‐assembly process, and the resulting material acts as a soft template for the crystallization of ZnO upon addition of a zinc salt and ammonia under mild refluxing conditions. The formation mechanism of such hollow spheres has been investigated. These new hybrid ZnO–dye hollow spheres display distinct optical properties that differ from properties observed for the pure ZnO and dye components. This approach is a new and effective method for fabricating novel semiconductor–dye hybrids with unique electronic and optical properties and is expected to provide access to additional inorganic–organic materials with novel structures and unusual functionalities.  相似文献   

6.
The semiconductor–electrode interface impacts the function and the performance of (opto)electronic devices. For printed organic electronics the electrode surface is not atomically clean leading to weakly interacting interfaces. As a result, solution‐processed organic ultrathin films on electrodes typically form islands due to dewetting. It has therefore been utterly difficult to achieve homogenous ultrathin conjugated polymer films. This has made the investigation of the correct energetics of the conjugated polymer–electrode interface impossible. Also, this has hampered the development of devices including ultrathin conjugated polymer layers. Here, Langmuir–Shäfer‐manufactured homogenous mono‐ and multilayers of semiconducting polymers on metal electrodes are reported and the energy level bending using photoelectron spectroscopy is tracked. The amorphous films display an abrupt energy level bending that does not extend beyond the first monolayer. These findings provide new insights of the energetics of the polymer–electrode interface and opens up for new high‐performing devices based on ultrathin semiconducting polymers.  相似文献   

7.
Zinc oxide (ZnO) devices represent an alternative in the semiconductor technology for their application in resistive switching memory devices and ultraviolet (UV) photodetectors due to their chemical and electrical properties. The multilevel current amplification of ZnO rods RRAM devices induced by UV light illumination is reported here for the first time. The resistive switching mechanism underlying in this type of devices is attributed to the formation of conductive filaments composed of oxygen vacancies. The analysis of the photodecay processes carried out on the devices fabricated with different electrodes shows that the type of interface (Ag/ZnO and Au/ZnO) affects the surface barrier height, which influences the photodecay rate. It is shown that by applying UV light, higher relaxation constants (slower photodecay rates) are obtained and lead to multilevel current amplification behavior.  相似文献   

8.
Electron injection from the source–drain electrodes limits the performance of many n‐type organic field‐effect transistors (OFETs), particularly those based on organic semiconductors with electron affinities less than 3.5 eV. Here, it is shown that modification of gold source–drain electrodes with an overlying solution‐deposited, patterned layer of an n‐type metal oxide such as zinc oxide (ZnO) provides an efficient electron‐injecting contact, which avoids the use of unstable low‐work‐function metals and is compatible with high‐resolution patterning techniques such as photolithography. Ambipolar light‐emitting field‐effect transistors (LEFETs) based on green‐light‐emitting poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole) (F8BT) and blue‐light‐emitting poly(9,9‐dioctylfluorene) (F8) with electron‐injecting gold/ZnO and hole‐injecting gold electrodes show significantly lower electron threshold voltages and several orders of magnitude higher ambipolar currents, and hence light emission intensities, than devices with bare gold electrodes. Moreover, different solution‐deposited metal oxide injection layers are compared. By spin‐coating ZnO from a low‐temperature precursor, processing temperatures could be reduced to 150 °C. Ultraviolet photoemission spectroscopy (UPS) shows that the improvement in transistor performance is due to reduction of the electron injection barrier at the interface between the organic semiconductor and ZnO/Au compared to bare gold electrodes.  相似文献   

9.
The ability to tune the electronic properties of soluble wide bandgap semiconductors is crucial for their successful implementation as carrier‐selective interlayers in large area opto/electronics. Herein the simple, economical, and effective p‐doping of one of the most promising transparent semiconductors, copper(I) thiocyanate (CuSCN), using C60F48 is reported. Theoretical calculations combined with experimental measurements are used to elucidate the electronic band structure and density of states of the constituent materials and their blends. Obtained results reveal that although the bandgap (3.85 eV) and valence band maximum (?5.4 eV) of CuSCN remain unaffected, its Fermi energy shifts toward the valence band edge upon C60F48 addition—an observation consistent with ptype doping. Transistor measurements confirm the p‐doping effect while revealing a tenfold increase in the channel's hole mobility (up to 0.18 cm2 V?1 s?1), accompanied by a dramatic improvement in the transistor's bias‐stress stability. Application of CuSCN:C60F48 as the hole‐transport layer (HTL) in organic photovoltaics yields devices with higher power conversion efficiency, improved fill factor, higher shunt resistance, and lower series resistance and dark current, as compared to control devices based on pristine CuSCN or commercially available HTLs.  相似文献   

10.
It is essential for novel photodetectors to show good photoresponses, high stability, and have facile fabrication methods. Herein, an optimized electrospinning method to fabricate a photodetector based on nanowire arrays that has a wide spectral response range is demonstrated. Arrays of ZnO‐CdO hybrid nanowires are carefully fabricated fusing ZnO and CdO portions into the same nanowires and subsequently assembling those nanowires into a regular structure. Compared to pure ZnO or CdO nanowire arrays, the hybrid arrays show comparable photocurrent/dark current ratios and response speeds, but they possess a much wider spectral response range from ultraviolet to visible light. The optoelectronic and electronic properties of the ZnO‐CdO hybrid nanowire arrays are systematically explored. Based on this, a transparent and flexible photodetector made of ZnO‐CdO hybrid nanowire arrays is fabricated. It shows a high transparency of around 95% in the spectral range of 400–800 nm and maintains its properties even after 200 bending cycles. Importantly, the developed, simple method can be directly applied to many types of substrates and a transfer of the nanowires becomes unnecessary, which guarantees a high quality of the devices.  相似文献   

11.
Conjugated polymers are an important class of materials for organic electronics applications. There, the relative alignment of the electronic energy levels at ubiquitous organic/(in)organic interfaces is known to crucially impact device performance. On the prototypical example of poly(3‐hexylthiophene) and a fluorinated derivative, the energies of the ionization and affinity levels of π‐conjugated polymers are revealed to critically depend on the orientation of the polymer backbones with respect to such interfaces. Based on extensive first‐principles calculations, an intuitive electrostatic model is developed that quantitatively traces these observations back to intrinsic intramolecular surface dipoles arising from the π‐electron system and intramolecular polar bonds. The results shed new light on the working principles of organic electronic devices and suggest novel strategies for materials design.  相似文献   

12.
Indium tin oxide (ITO) is extensively used as a transparent electrode in photovoltaic cells and organic light emitting diodes. High surface work function (WF) of ITO is a crucial parameter for enhanced device performance. The ITO WF is usually around 4.3 eV without any surface treatment. With surface treatments ITO WF, as high as 5.4 eV has been reported. We designed a surface treatment method with which we achieved substantially high ITO surface work function of over 6.1 eV. We observed changes in valence electronic structure and core levels, apart from surface cleaning. We also investigated interface formation of copper phthalocyanine (CuPc) on the high WF ITO. In the proximity of the interface the highest occupied energy level of CuPc was observed to be almost pinned to the Fermi level. We fabricated three simple devices with no to high treatment. The device results were observed to be consistent with the findings of electronic energy level alignment.  相似文献   

13.
The electronic band alignment of the Zn(O,S)/Cu(In,Ga)Se2 interface in high‐efficiency thin‐film solar cells was derived using X‐ray photoelectron spectroscopy, ultra‐violet photoelectron spectroscopy, and inverse photoemission spectroscopy. Similar to the CdS/Cu(In,Ga)Se2 system, we find an essentially flat (small‐spike) conduction band alignment (here: a conduction band offset of (0.09 ± 0.20) eV), allowing for largely unimpeded electron transfer and forming a likely basis for the success of high‐efficiency Zn(O,S)‐based chalcopyrite devices. Furthermore, we find evidence for multiple bonding environments of Zn and O in the Zn(O,S) film, including ZnO, ZnS, Zn(OH)2, and possibly ZnSe. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Injection and extraction of charges through ohmic contacts are required for efficient operation of semiconductor devices. Treatment using polar non‐solvents switches polar anode surfaces, including PEDOT:PSS and ITO, from barrier‐limited hole injection and extraction to ohmic behaviour. This is caused by an in‐situ modification of the anode surface that is buried under a layer of organic semiconductor. The exposure to methanol removes polar hydroxyl groups from the buried anode interface, and permanently increases the work function by 0.2–0.3 eV. In the case of ITO/PEDOT:PSS/PBDTTT‐CT:PC71BM/Al photovoltaic devices, the higher work function promotes charge transfer, leading to p‐doping of the organic semiconductor at the interface. This results in a two‐fold increase in hole extraction rates which raises both the fill factor and the open‐circuit voltage, leading to high power conversion efficiency of 7.4%. In ITO/PEDOT:PSS/F8BT/Al polymer light‐emitting diodes, where the organic semiconductor's HOMO level lies deeper than the anode Fermi level, the increased work function enhances hole injection efficiency and luminance intensity by 3 orders of magnitude. In particular, hole injection rates from PEDOT:PSS anodes are equivalent to those achievable using MoO3. These findings exemplify the importance of work function control as a tool for improved electrode design, and open new routes to device interfacial optimization using facile solvent processing techniques. Such simple, persistent, treatments pave the way towards low cost manufacturing of efficient organic optoelectronic devices.  相似文献   

15.
A general technique for modifying energy level alignment at organic–organic heterojunctions is introduced, and is demonstrated here for phenyl-C61-butyric acid methyl ester (PCBM) and N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]-1,1′-biphenyl)-4,4′-diamine (α-NPD). An ultra-thin layer (∼1 nm) of TiO2 is used as an adhesion template to attach a self-assembled monolayer of dipolar phosphonate (PA) molecules to the lower interface of a two-stack ensemble. This modification induces shifts in the vacuum level and work function over ∼1.0 eV depending on the molecular dipole moment of the PA, which in turn modifies the electronic level alignment across the organic heterojunction interface by up to 0.5 eV.  相似文献   

16.
Strain modulation in flexible semiconductor heterojunctions has always been considered as an effective way to modulate the performance of nanodevices. In this work, a graphene/ZnO nanorods film Schottky junction has been constructed. It shows considerable responsivity and fast on‐off switch to the UV illumination. Through utilizing the piezopotential induced by the atoms displacement in ZnO under the compressive strain, 17% enhanced photosensing property is achieved in this hybrid structure when applying ?0.349% strain. This performance improvement can be ascribed to the Schottky barrier height modification by the strain‐induced piezopotential, which results in the facilitation of electron–hole separation in the graphene/ZnO interface. An energy band principle as well as a finite element analysis is proposed to understand this phenomenon. The results here provide a facile approach to boost the optoelectronic performance of graphene/ZnO heterostructure, which may also be applied to other Schottky junction based hybrid devices.  相似文献   

17.
Near‐infrared (NIR) lighting plays an increasingly important role in new facial recognition technologies and eye‐tracking devices, where covert and nonvisible illumination is needed. In particular, mobile or wearable gadgets that employ these technologies require electronic lighting components with ultrathin and flexible form factors that are currently unfulfilled by conventional GaAs‐based diodes. Colloidal quantum dots (QDs) and emerging perovskite light‐emitting diodes (LEDs) may fill this gap, but generally employ restricted heavy metals such as cadmium or lead. Here, a new NIR‐emitting diode based on heavy‐metal‐free In(Zn)As–In(Zn)P–GaP–ZnS quantum dots is reported. The quantum dots are prepared with a giant shell structure, enabled by a continuous injection synthesis approach, and display intense photoluminescence at 850 nm with a high quantum efficiency of 75%. A postsynthetic ligand exchange to a shorter‐chain 1‐mercapto‐6‐hexanol (MCH) affords the QDs with processability in polar solvents as well as an enhanced charge‐transport performance in electronic devices. Using solution‐processing methods, an ITO/ZnO/PEIE/QD/Poly‐TPD/MoO3/Al electroluminescent device is fabricated and a high external quantum efficiency of 4.6% and a maximum radiance of 8.2 W sr?1 m?2 are achieved. This represents a significant leap in performance for NIR devices employing a colloidal III–V semiconductor QD system, and may find significant applications in emerging consumer electronic products.  相似文献   

18.
Significant increase of photocurrent upon UV light exposure is demonstrated in a narrow‐bandgap polymer‐based photodetector using ZnO nanoparticles as anode interfacial layer. The phenomenon is attributed to the UV light illumination induced oxygen molecules desorption from surface of ZnO nanoparticles, which reduces the electron injection barrier at the anode interface. Ultrahigh external quantum efficiency of 140 000% and extremely low gain threshold voltage of 1.5 mV are achieved in this device with 30 s UV light irradiation. The gain mechanism is explained by the fast transit and replenishment of photogenerated electrons within their lifetime, which is prolonged by the electron‐only device structure, and the experiment results fit well with the proposed photoconductive model.  相似文献   

19.
Alkoxy side‐chain tethered polyfluorene conjugated polyelectrolyte (CPE), poly[(9,9‐bis((8‐(3‐methyl‐1‐imidazolium)octyl)‐2,7‐fluorene)‐alt‐(9,9‐bis(2‐(2‐methoxyethoxy)ethyl)‐fluorene)] dibromide (F8imFO4), is utilized to obtain CPE‐hybridized ZnO nanoparticles (NPs) (CPE:ZnO hybrid NPs). The surface defects of ZnO NPs are passivated through coordination interactions with the oxygen atoms of alkoxy side‐chains and the bromide anions of ionic pendent groups from F8imFO4 to the oxygen vacancies of ZnO NPs, and thereby the fluorescence quenching at the interface of yellow‐emitting poly(p‐phenylene vinylene)/CPE:ZnO hybrid NPs is significantly reduced at the CPE concentration of 4.5 wt%. Yellow‐emitting polymer light‐emitting diodes (PLEDs) with CPE(4.5 wt%):ZnO hybrid NPs as a cathode interfacial layer show the highest device efficiencies of 11.7 cd A?1 at 5.2 V and 8.6 lm W?1 at 3.8 V compared to the ZnO NP only (4.8 cd A?1 at 7 V and 2.2 lm W?1 at 6.6 V) or CPE only (7.3 cd A?1 at 5.2 V and 4.9 lm W?1 at 4.2 V) devices. The results suggest here that the CPE:ZnO hybrid NPs has a great potential to improve the device performance of organic electronics.  相似文献   

20.
Research on hybrid inorganic‐organic materials has experienced an explosive growth since the 1980s, with the expansion of soft inorganic chemistry based processes. Indeed, mild synthetic conditions, low processing temperatures provided by “chimie douce” and the versatility of the colloidal state allow for the mixing of the organic and inorganic components at the nanometer scale in virtually any ratio to produce the so called hybrid materials. Today a high degree of control over both composition and nanostructure of these hybrids can be achieved allowing tunable structure‐property relationships. This, in turn, makes it possible to tailor and fine‐tune many properties (mechanical, optical, electronic, thermal, chemical…) in very broad ranges, and to design specific multifunctional systems for applications. In particular, the field of “Hybrid‐Optics” has been very productive not only scientifically but also in terms of applications. Indeed, numerous optical devices based on hybrids are already in, or very close, to the market. This review describes most of the recent advances performed in this field. Emphasis will be given to luminescent, photochromic, NLO and plasmonic properties. As an outlook we show that the controlled coupling between plasmonics and luminescence is opening a land of opportunities in the field of “Hybrid‐Optics”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号