首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Plasmon‐induced hot carriers have vast potential for light‐triggered high‐efficiency carrier generation and extraction, which can overcome the optical band gap limit of conventional semiconductor‐based optoelectronic devices. Here, it is demonstrated that Au/TiO2 dumbbell nanostructures assembled on a thin Au film serve as an efficient optical absorber and a hot‐carrier generator in the visible region. Upon excitation of localized surface plasmons in such coupled particle‐on‐film nanocavities, the energetic conduction electrons in Au can be injected over the Au/TiO2 Schottky barrier and migrated to TiO2, participating in the chemical reaction occurring at the TiO2 surface. Compared with the same dumbbell nanostructures on an indium tin oxide (ITO) film, such nanocavities exhibit remarkable enhancement in both photocurrent amplitude and reaction rate that arise from increased light absorption and near‐field amplification in the presence of the Au film. The incident‐wavelength‐dependent photocurrent and reaction rate measurements jointly reveal that Au‐film‐mediated near‐field localization facilitates more efficient electron–hole separation and transport in the dumbbells and also promotes strong d‐band optical transitions in the Au film for generation of extra hot electrons. Such nanocavities provide a new plasmonic platform for effective photoexcitation and extraction of hot carriers and also better understanding of their fundamental science and technological implications in solar energy harvesting.  相似文献   

2.
We present experimental results for photocurrent enhancements in thin c‐Si solar cells due to light‐trapping by self‐assembled, random Ag nanoparticle arrays. The experimental geometry is chosen to maximise the enhancement provided by employing previously reported design considerations for plasmonic light‐trapping. The particles are located on the rear of the cells, decoupling light‐trapping and anti‐reflection effects, and the scattering resonances of the particles are red‐shifted to target spectral regions which are poorly absorbed in Si, by over‐coating with TiO2. We report a relative increase in photocurrent of 10% for 22 µm Si cells due to light‐trapping. Incorporation of a detached mirror behind the nanoparticles increases the photocurrent enhancement to 13% and improves the external quantum efficiency by a factor of 5.6 for weakly absorbed light. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Optical effects of the plasmonic structures and the materials effects of the metal nanomaterials have recently been individually studied for enhancing performance of organic solar cells (OSCs). Here, the effects of plasmonically induced carrier generation and enhanced carrier extraction of the carrier transport layer (i.e., plasmonic‐electrical effects) in OSCs are investigated. Enhanced charge extraction in TiO2 as a highly efficient electron transport layer by the incorporation of metal nanoparticles (NPs) is proposed and demonstrated. Efficient device performance is demonstrated by using Au NPs incorporated TiO2 at a plasmonic wavelength (560–600 nm), which is far longer than the originally necessary UV light. By optimizing the concentration ratio of the Au NPs in the NP‐TiO2 composite, the performances of OSCs with various polymer active layers are enhanced and efficiency of 8.74% is reached. An integrated optical and electrical model, which takes into account plasmonic‐induced hot carrier tunneling probability and extraction barrier between TiO2 and the active layer, is introduced. The enhanced charge extraction under plasmonic illumination is attributed to the strong charge injection of plasmonically excited electrons from NPs into TiO2. The mechanism favors trap filling in TiO2, which can lower the effective energy barrier and facilitate carrier transport in OSCs.  相似文献   

4.
In this work, a high‐performance ITO‐free flexible polymer solar cell (PSC) is successfully described by integrating the plasmonic effect into the ITO‐free microcavity architecture. By carefully controlling the sizes of embedded Ag nanoprisms and their doping positons in the stratified device, a significant enhancement in power conversion efficiency (PCE) is shown from 8.5% (reference microcavity architecture) to 9.4% on flexible substrates. The well‐manipulated plasmonic resonances introduced by the embedded Ag nanoprisms with different LSPR peaks allow the complementary light‐harvesting with microcavity resonance in the regions of 400–500 nm and 600–700 nm, resulting in the substantially increased photocurrent. This result not only signifies that the spectral matching between the LSPR peaks of Ag nanoprisms and the relatively low absorption response of photoactive layer in the microcavity architecture is an effective strategy to enhance light‐harvesting across its absorption region, but also demonstrates the promise of tailoring two different resonance bands in a synergistic manner at desired wavelength region to enhance the efficiency of PSCs.  相似文献   

5.
It is been widely reported that plasmonic effects in metallic nanomaterials can enhance light trapping in organix solar cells (OSCs). However, typical nanoparticles (NP) of high quality (i.e., mono‐dispersive) only possess a single resonant absorption peak, which inevitably limits the power conversion efficiency (PCE) enhancement to a narrow spectral range. Broadband plasmonic absorption is obviously highly desirable. In this paper, a combination of Ag nanomaterials of different shapes, including nanoparticles and nanoprisms, is proposed for this purpose. The nanomaterials are synthesized using a simple wet chemical method. Theoretical and experimental studies show that the origin of the observed PCE enhancement is the simultaneous excitation of many plasmonic low‐ and high‐order resonances modes, which are material‐, shape‐, size‐, and polarization‐dependent. Particularly for the Ag nanoprisms studied here, the high‐order resonances result in higher contribution than low‐order resonances to the absorption enhancement of OSCs through an improved overlap with the active material absorption spectrum. With the incorporation of the mixed nanomaterials into the active layer, a wide‐band absorption improvement is demonstrated and the short‐circuit photocurrent density (Jsc) improves by 17.91%. Finally, PCE is enhanced by 19.44% as compared to pre‐optimized control OSCs. These results suggest a new approach to achieve higher overall enhancement through improving broadband absorption.  相似文献   

6.
We report photovoltaic devices consisting of patterned TiO2, porphyrin dyes, and layer‐by‐layer (LBL) polyelectrolyte multilayer/oligoethylene glycol dicarboxylic acid (OEGDA) composite films. A composite polyelectrolyte LBL/OEGDA film was fabricated by formation of an alternating multilayer of linear polyethyleneimine (LPEI) and polyacrylic acid (PAA), followed by immersion of the LBL film into an OEGDA aqueous solution. The ionic conductivity attained in this LBL LPEI/PAA and OEGDA composite film was approximately 10–5 S cm–1 at room temperature and humidity. Investigations of dye‐sensitized photovoltaic devices constructed with the LBL (LPEI/PAA)/OEGDA composite films, TiO2, and four types of porphyrin dyes resulted in optimization of the dye molecule and its orientation at the interface with the ionically conductive composite. The photocurrent value of photovoltaic devices constructed with the composite LBL/OEGDA film from illumination of a xenon white light source exhibited a nearly 1.5 times enhancement over the device without OEGDA. This enhancement of the photocurrent was due to the high room‐temperature ionic conductivity of the multilayer composite film. Further marked improvements of the photovoltaic performance were achieved by patterning the TiO2 electrode using polymer stamping as a template for TiO2 deposition. The device with patterned TiO2 electrodes exhibited almost 10 times larger conversion efficiencies than a similar device without patterning.  相似文献   

7.
Nanowire memristor devices that display multilevel memory effects are of great interest for high‐density storage, however, numerous challenges remain in fabricating high‐quality, stable memory units. A plasmonic‐radiation‐enhanced technique is introduced in this work for scalably forming nanowire multilevel memory units with superior properties. Femtosecond laser irradiation of gold‐titanium dioxide nanowire‐gold structures results in plasmonic‐enhanced optical absorption in the TiO2 locally at the metal‐oxide interface. This produces junctions with superior mechanical and electrical contact, and engineers a concentration of charged defects in the TiO2 near the interface, which enables stable multilevel memory behavior without the need for a traditional electroforming step. The memory units produced display eight‐level current amplification under continuous forward voltage cycles, and can replicate complex multilevel memory sequences without interference between the different multilevel states.  相似文献   

8.
A systematic investigation of the nanoparticle‐enhanced light trapping in thin‐film silicon solar cells is reported. The nanoparticles are fabricated by annealing a thin Ag film on the cell surface. An optimisation roadmap for the plasmon‐enhanced light‐trapping scheme for self‐assembled Ag metal nanoparticles is presented, including a comparison of rear‐located and front‐located nanoparticles, an optimisation of the precursor Ag film thickness, an investigation on different conditions of the nanoparticle dielectric environment and a combination of nanoparticles with other supplementary back‐surface reflectors. Significant photocurrent enhancements have been achieved because of high scattering and coupling efficiency of the Ag nanoparticles into the silicon device. For the optimum light‐trapping scheme, a short‐circuit current enhancement of 27% due to Ag nanoparticles is achieved, increasing to 44% for a “nanoparticle/magnesium fluoride/diffuse paint” back‐surface reflector structure. This is 6% higher compared with our previously reported plasmonic short‐circuit current enhancement of 38%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Photoelectrochemical (PEC) water splitting offers a promising strategy for converting solar energy to chemical fuels. Herein, a piezoelectric‐effect–enhanced full‐spectrum photoelectrocatalysis with multilayered coaxial titanium dioxide/barium titanate/silver oxide (TiO2/BTO/Ag2O) nanorod array as the photoanode is reported. The vertically grown nanorods ensure good electron conductivity, which enables fast transport of the photogenerated electrons. Significantly, the insertion of a piezoelectric BaTiO3 (BTO) nanolayer at the p‐type Ag2O and n‐type TiO2 interface created a polar charge‐stabilized electrical field. It maintains a sustainable driving force that attract the holes of TiO2 and the electrons of Ag2O, resulting in greatly increased separation and inhibited recombination of the photogenerated carriers. Furthermore, Ag2O as a narrow bandgap semiconductor has a high ultraviolet–visible–near infrared (UV–vis–NIR) photoelectrocatalytic activity. The TiO2/BTO/Ag2O, after poling, successfully achieves a prominent photocurrent density, as high as 1.8 mA cm?2 at 0.8 V versus Ag/Cl, which is about 2.6 times the TiO2 nanorod photoanode. It is the first time that piezoelectric BaTiO3 is used for tuning the interface of p‐type and n‐type photoelectrocatalyst. With the enhanced light harvesting, efficient photogenerated electron–hole pairs' separation, and rapid charge transfer at the photoanode, an excellent photoelectrocatalytic activity is realized.  相似文献   

10.
The preparation of micropatterned TiO2 nanotubes (NTs) with tunable morphologies by combining laser micromachining technology and an anodization method is reported. The micropatterned structure can be easily designed and fabricated by laser micromachining a titanium substrate, further anodization of which gives nanotube arrays perpendicularly oriented to the titanium surface. The patterned TiO2 NTs show dramatically improved photocurrent and photocatalytic performances because of their enhanced surface area and light‐harvesting capability. The photocurrent density and incident‐photon‐to‐current efficiency at the peak absorption increases by 48 and 39%, respectively, compared to a TiO2 NT array without a patterned structure. It was also found that micropatterning dramatically improves the mechanical stability of the TiO2 NTs on the substrate, which otherwise were liable to peel off from the substrate surface. The strategy will reasonably expand the application of TiO2 NTs in a variety of fields that require enhanced photo‐electrocatalysis and mechanical stability.  相似文献   

11.
Catalytic light‐powered micromotors have become a major focus in current autonomous self‐propelled micromotors research. The attractiveness of such machines stems from the fact that these motors are “fuel‐free,” with their motion modulated by light irradiation. In order to study how different metals affect the velocities of metal/TiO2 micromachines in the presence of UV irradiation in pure water, Pt/TiO2, Cu/TiO2, Fe/TiO2, Ag/TiO2, and Au/TiO2 Janus micromotors are prepared. The metals have different chemical potentials and catalytic effects toward water splitting reaction, with both the effects expected to alter the photoelectrochemically‐induced reaction and propulsion rates. Analysis of structures, elemental compositions, motion patterns, velocities, and overall performances of different metals (Pt, Au, Ag, Fe, Cu) on TiO2 are observed by scanning electron microscopy, energy dispersive X‐ray spectroscopy, and optical microscopy. Electrochemical Tafel analysis is performed for the different metal/TiO2 structures and it is concluded that the effective velocity is a result of the synergistic effect of chemical potential and catalysis. It is found that the Pt/TiO2 Janus micromotors exhibit the fastest motion compared to the rest of the prepared materials. Furthermore, after exposure to UV light, every fabricated micromotor shows high possibility of forming assembled chains which influence their velocity.  相似文献   

12.
Nonmetallic plasmonic heterostructure TiO2‐mesocrystals/WO3?x‐nanowires (TiO2‐MCs/WO3?x‐NWs) are constructed by coupling mesoporous crystal TiO2 and plasmonic WO3?x through a solvothermal procedure. The continuous photoelectron injection from TiO2 stabilizes the free carrier density and leads to strong surface plasmon resonance (SPR) of WO3?x, resulting in strong light absorption in the visible and near‐infrared region. Photocatalytic hydrogen generation of TiO2‐MCs/WO3?x‐NWs is attributed to plasmonic hot electrons excited on WO3?x‐NWs under visible light irradiation. However, utilization of injected photoelectrons on WO3?x‐NWs has low efficiency for hydrogen generation and a co‐catalyst (Pt) is necessary. TiO2‐MCs/WO3?x‐NWs are used as co‐catalyst free plasmonic photocatalysts for CO2 reduction, which exhibit much higher activity (16.3 µmol g?1 h?1) and selectivity (83%) than TiO2‐MCs (3.5 µmol g?1 h?1, 42%) and WO3?x‐NWs (8.0 µmol g?1 h?1, 64%) for methane generation under UV–vis light irradiation. A photoluminescence study demonstrates the photoelectron injection from TiO2 to WO3?x, and the nonmetallic SPR of WO3?x plays a great role in the highly selective methane generation during CO2 photoreduction.  相似文献   

13.
A solid‐state dye‐sensitized solar cell (ssDSSC) with 7.4% efficiency at 100 mW/cm2 is reported. This efficiency is one of the highest observed for N719 dye. High performance is achieved via a honeycomb‐like, organized mesoporous TiO2 photoanode with dual pores, high porosity, good interconnectivity, and excellent light scattering properties. The TiO2 photoanodes are prepared without any TiCl4 treatment via a one‐step, direct self‐assembly of hydrophilically preformed TiO2 nanocrystals and poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer as a titania source and a structure‐directing agent, respectively. Upon controlling the secondary forces between the polymer/TiO2 hybrid and the solvent by varying the amounts of HCl/H2O mixture or toluene, honeycomb‐like structures are generated to improve light scattering properties. Such multifunctional nanostructures with dual pores provide good pore‐filling of solid polymer electrolyte with large volume, enhanced light harvesting and reduced charge recombination, as confirmed by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency (IPCE), and electrochemical impedance spectroscopy (EIS) analysis.  相似文献   

14.
We demonstrate plasmonic effects in bulk heterojunction organic solar cells (OSCs) consisting of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) by incorporating silver (Ag) triangular shaped nanoparticles (nanoprisms; NPSs) into a poly(3,4-ethylenedioxythiophene) buffer layer. The optical absorption and geometric characteristics of the Ag NPSs were investigated in terms of their tunable in-plane dipole local surface plasmon resonance (LSPR) bands. The photovoltaic characteristics showed that the power conversion efficiency (PCE) of the plasmonic OSCs was enhanced by an increase of short circuit current (Jsc) compared to that of the reference cells without any variation in electrical properties. The enhanced Jsc is directly related to the enhancement of optical absorption efficiency by the LSPR of the Ag NPSs. We measured the photovoltaic characteristics of the plasmonic OSCs with various distances between the Ag NPSs and the P3HT:PCBM active layer, in which the PCEs of the plasmonic OSCs decreased with increasing distance. This suggests that the increase of photocurrent and optical absorption was due to near field enhancement (i.e., intensified incident light on the active layer) by the LSPR of the Ag NPSs.  相似文献   

15.
The color of polymer solar cells using an opaque electrode is given by the reflected light, which depends on the composition and thickness of each layer of the device. Metal‐oxide‐based optical spacers are intensively studied in polymer solar cells aiming to optimize the light absorption. However, the low conductivity of materials such as ZnO and TiO2 limits the thickness of such optical spacers to tenths of nanometers. A novel synthesis route of cluster‐free Al‐doped ZnO (AZO) nanocrystals (NCs) is presented for solution processing of highly conductive layers without the need of temperature annealing, including thick optical spacers on top of polymer blends. The processing of 80 nm thick optical spacers based on AZO nanocrystal solutions on top of 200 nm thick polymer blend layer is demonstrated leading to improved photocurrent density of 17% compared to solar cells using standard active layers of 90 nm in combination with thin ZnO‐based optical spacers. These AZO NCs also open new opportunities for the processing of high‐efficiency color tuned solar cells. For the first time, it is shown that applying solution‐processed thick optical spacer with polymer blends of different thicknesses can process solar cells of similar efficiency over 7% but of different colors.  相似文献   

16.
The plasmonic properties of noble metals facilitate their use for in vivo bio‐applications such as targeted drug delivery and cancer cell therapy. Nanosilver is best suited for such applications as it has the lowest plasmonic losses among all such materials in the UV‐visible spectrum. Its toxicity, however, can destroy surrounding healthy tissues and thus, hinders its safe use. Here, that toxicity against a model biological system (Escherichia coli) is “cured” or blocked by coating nanosilver hermetically with a about 2 nm thin SiO2 layer in one‐step by a scalable flame aerosol method followed by swirl injection of a silica precursor vapor (hexamethyldisiloxane) without reducing the plasmonic performance of the enclosed or encapsulated silver nanoparticles (20–40 nm in diameter as determined by X‐ray diffraction and microscopy). This creates the opportunity to safely use powerful nanosilver for intracellular bio‐applications. The label‐free biosensing and surface bio‐functionalization of these ready‐to‐use, non‐toxic (benign) Ag nanoparticles is presented by measuring the adsorption of bovine serum albumin (BSA) in a model sensing experiment. Furthermore, the silica coating around nanosilver prevents its agglomeration or flocculation (as determined by thermal annealing, optical absorption spectroscopy and microscopy) and thus, enhances its biosensitivity, including bioimaging as determined by dark field illumination.  相似文献   

17.
For the effective application of surface‐enhanced Raman scattering (SERS) nanoprobes for in vivo targeting, the tissue transparency of the probe signals should be as high as it can be in order to increase detection sensitivity and signal reproducibility. Here, near‐infrared (NIR)‐sensitive SERS nanoprobes (NIR SERS dots) are demonstrated for in vivo multiplex detection. The NIR SERS dots consist of plasmonic Au/Ag hollow‐shell (HS) assemblies on the surface of silica nanospheres and simple aromatic Raman labels. The diameter of the HS interior is adjusted from 3 to 11 nm by varying the amount of Au3+ added, which results in a red‐shift of the plasmonic extinction of the Au/Ag nanoparticles toward the NIR (700–900 nm). The red‐shifted plasmonic extinction of NIR SERS dots causes enhanced SERS signals in the NIR optical window where endogenous tissue absorption coefficients are more than two orders of magnitude lower than those for ultraviolet and visible light. The signals from NIR SERS dots are detectable from 8‐mm deep in animal tissues. Three kinds of NIR SERS dots, which are injected into live animal tissues, produce strong SERS signals from deep tissues without spectral overlap, demonstrating their potential for in vivo multiplex detection of specific target molecules.  相似文献   

18.
The design and fabrication of solar‐to‐chemical energy conversion devices are enabled through interweaving multiple components with various morphologies and unique functions using a versatile layer‐by‐layer assembly method. Cationic and anionic polyelectrolytes are used as an electrostatic adhesive to assemble the following functional materials: plasmonic Ag nanoparticles for improved light harvesting, upconversion nanoparticles for utilization of near‐infrared light, and polyoxometalate water oxidation catalysts for enhanced catalytic activity. Polyelectrolytes also have an additional function of passivating the surface recombination centers of the underlying photoelectrode. These functional components are precisely assembled on a model photoanode (e.g., Fe2O3 and BiVO4) in a desired order and various combinations without degradation of their intrinsic properties. As a result, the performance of water oxidation photoanodes is synergistically enhanced. This study can enable the design and fabrication of novel solar‐to‐chemical energy conversion devices.  相似文献   

19.
Asymmetric Janus nanostructures containing a gold nanocage (NC) and a carbon–titania hybrid nanocrystal (AuNC/(C–TiO2)) are prepared using a novel and facile microemulsion‐based approach that involves the assistance of ethanol. The localized surface plasmon resonance of the Au NC with a hollow interior and porous walls induce broadband visible‐light harvesting in the Janus AuNC/(C–TiO2). An acetone evolution rate of 6.3 μmol h?1 g?1 is obtained when the Janus nanostructure is used for the photocatalytic aerobic oxidation of iso‐propanol under visible light (λ = 480–910 nm); the rate is 3.2 times the value of that obtained with C–TiO2, and in photo‐electrochemical investigations an approximately fivefold enhancement is obtained. Moreover, when compared with the core–shell structure (AuNC@(C–TiO2) and a gold–carbon–titania system where Au sphere nanoparticles act as light‐harvesting antenna, Janus AuNC/(C–TiO2) exhibit superior plasmonic enhancement. Electromagnetic field simulation and electron paramagnetic resonance results suggest that the plasmon–photon coupling effect is dramatically amplified at the interface between the Au NC and C–TiO2, leading to enhanced generation of energetic hot electrons for photocatalysis.  相似文献   

20.
Hybrid dye‐sensitized solar cells are typically composed of mesoporous titania (TiO2), light‐harvesting dyes, and organic molecular hole‐transporters. Correctly matching the electronic properties of the materials is critical to ensure efficient device operation. In this study, TiO2 is synthesized in a well‐defined morphological confinement that arises from the self‐assembly of a diblock copolymer—poly(isoprene‐b‐ethylene oxide) (PI‐b‐PEO). The crystallization environment, tuned by the inorganic (TiO2 mass) to organic (polymer) ratio, is shown to be a decisive factor in determining the distribution of sub‐bandgap electronic states and the associated electronic function in solid‐state dye‐sensitized solar cells. Interestingly, the tuning of the sub‐bandgap states does not appear to strongly influence the charge transport and recombination in the devices. However, increasing the depth and breadth of the density of sub‐bandgap states correlates well with an increase in photocurrent generation, suggesting that a high density of these sub‐bandgap states is critical for efficient photo‐induced electron transfer and charge separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号