首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduction of carbon dioxide (CO2) into chemical feedstock is drawing increasing attention as a prominent method of recycling atmospheric CO2. Although many studies have been devoted in designing an efficient catalyst for CO2 conversion with noble metals, low selectivity and high energy input still remain major hurdles. One possible solution is to use the combination of an earth‐abundant electrocatalyst with a photoelectrode powered by solar energy. Herein, for the first time, a p‐type silicon nanowire with nitrogen‐doped graphene quantum sheets (N‐GQSs) as heterogeneous electrocatalyst for selective CO production is demonstrated. The photoreduction of CO2 into CO is achieved at a potential of ?1.53 V versus Ag/Ag+, providing 0.15 mA cm?2 of current density, which is 130 mV higher than that of a p‐type Si nanowire decorated with well‐known Cu catalyst. The faradaic efficiency for CO is 95%, demonstrating significantly improved selectivity compared with that of bare planar Si. The density functional theory (DFT) calculations are performed, which suggest that pyridinic N acts as the active site and band alignment can be achieved for N‐GQSs larger than 3 nm. The demonstrated high efficiency of the catalytic system provides new insights for the development of nonprecious, environmentally benign CO2 utilization.  相似文献   

2.
The electrochemical conversion of carbon dioxide (CO2) into value‐added chemicals is regarded as one of the promising routes to mitigate CO2 emission. A nitrogen‐doped carbon‐supported palladium (Pd) single‐atom catalyst that can catalyze CO2 into CO with far higher mass activity than its Pd nanoparticle counterpart, for example, 373.0 and 28.5 mA mg?1Pd, respectively, at ?0.8 V versus reversible hydrogen electrode, is reported. A combination of in situ X‐ray characterization and density functional theory (DFT) calculation reveals that the Pd? N4 site is the most likely active center for CO production without the formation of palladium hydride (PdH), which is essential for typical Pd nanoparticle catalysts. Furthermore, the well‐dispersed Pd? N4 single‐atom site facilitates the stabilization of the adsorbed CO2 intermediate, thereby enhancing electrocatalytic CO2 reduction capability at low overpotentials. This work provides important insights into the structure‐activity relationship for single‐atom based electrocatalysts.  相似文献   

3.
The development of highly efficient robust electrocatalysts with low overpotential and industrial-level current density is of great significance for CO2 electroreduction (CO2ER), however the low proton transport rate during the CO2ER remains a challenge. Herein, a porous N-doped carbon nanofiber confined with tin-nitrogen sites (Sn/NCNFs) catalyst is developed, which is prepared through an integrated electrospinning and pyrolysis strategy. The optimized Sn/NCNFs catalyst exhibits an outstanding CO2ER activity with the maximum CO FE of 96.5%, low onset potential of −0.3 V, and small Tafel slope of 68.8 mV dec−1. In a flow cell, an industrial-level CO partial current density of 100.6 mA cm−2 is achieved. In situ spectroscopic analysis unveil the isolated Sn N site acted as active center for accelerating water dissociation and subsequent proton transport process, thus promoting the formation of intermediate *COOH in the rate-determining step for CO2ER. Theoretical calculations validate pyrrolic N atom adjacent to the Sn N active species assisted reducing the energy barrier for *COOH formation, thus boosting the CO2ER kinetics. A Zn-CO2 battery is designed with the cathode of Sn/NCNFs, which delivers a maximum power density of 1.38 mW cm−2 and long-term stability.  相似文献   

4.
The electrochemical CO2 reduction reaction (CO2RR) to value-added chemicals with renewable electricity is a promising method to decarbonize parts of the chemical industry. Recently, single metal atoms in nitrogen-doped carbon (MNC) have emerged as potential electrocatalysts for CO2RR to CO with high activity and faradaic efficiency, although the reaction limitation for CO2RR to CO is unclear. To understand the comparison of intrinsic activity of different MNCs, two catalysts are synthesized through a decoupled two-step synthesis approach of high temperature pyrolysis and low temperature metalation (Fe or Ni). The highly meso-porous structure results in the highest reported electrochemical active site utilization based on in situ nitrite stripping; up to 59±6% for NiNC. Ex situ X-ray absorption spectroscopy (XAS) confirms the penta-coordinated nature of the active sites. The catalysts are amongst the most active in the literature for CO2 reduction to CO. The density functional theory calculations (DFT) show that their binding to the reaction intermediates approximates to that of Au surfaces. However, it is found that the turnover frequencies (TOFs) of the most active catalysts for CO evolution converge, suggesting a fundamental ceiling to the catalytic rates.  相似文献   

5.
Transition metal nitrogen carbon based single-atom catalysts (SACs) have exhibited superior activity and selectivity for CO2 electroreduction to CO. A favorable local nitrogen coordination environment is key to construct efficient metal-N moieties. Here, a facile plasma-assisted and nitrogen vacancy (NV) induced coordinative reconstruction strategy is reported for this purpose. Under continuous plasma striking, the preformed pentagon pyrrolic N-defects around Ni sites can be transformed to a stable pyridinic N dominant Ni-N2 coordination structure with promoted kinetics toward the CO2-to-CO conversion. Both the CO selectivity and productivity increase markedly after the reconstruction, reaching a high CO Faradaic efficiency of 96% at mild overpotential of 590 mV and a large CO current density of 33 mA cm-2 at 890 mV. X-ray adsorption spectroscopy and density functional theory (DFT) calculations reveal this defective local N environment decreases the restraint on central Ni atoms and provides enough space to facilitate the adsorption and activation of CO2 molecule, leading to a reduced energy barrier for CO2 reduction.  相似文献   

6.
Electrochemically driven carbon dioxide (CO2) conversion is an emerging research field due to the global warming and energy crisis. Carbon monoxide (CO) is one key product during electroreduction of CO2; however, this reduction process suffers from tardy kinetics due to low local concentration of CO2 on a catalyst's surface and low density of active sites. Herein, presented is a combination of experimental and theoretical validation of a Ni porphyrin‐based covalent triazine framework (NiPor‐CTF) with atomically dispersed NiN4 centers as an efficient electrocatalyst for CO2 reduction reaction (CO2RR). The high density and atomically distributed NiN4 centers are confirmed by aberration‐corrected high‐angle annular dark field scanning transmission electron microscopy and extended X‐ray absorption fine structure. As a result, NiPor‐CTF exhibits high selectivity toward CO2RR with a Faradaic efficiency of >90% over the range from ?0.6 to ?0.9 V for CO conversion and achieves a maximum Faradaic efficiency of 97% at ?0.9 V with a high current density of 52.9 mA cm?2, as well as good long‐term stability. Further calculation by the density functional theory method reveals that the kinetic energy barriers decreasing for *CO2 transition to *COOH on NiN4 active sites boosts the performance.  相似文献   

7.
Dual metal–organic frameworks (MOFs, i.e., MIL‐100(Fe) and ZIF‐8) are thermally converted into Fe–Fe3C‐embedded Fe–N‐codoped carbon as platinum group metal (PGM)‐free oxygen reduction reaction (ORR) electrocatalysts. Pyrolysis enables imidazolate in ZIF‐8 rearranged into highly N‐doped carbon, while Fe from MIL‐100(Fe) into N‐ligated atomic sites concurrently with a few Fe–Fe3C nanoparticles. Upon precise control of MOF compositions, the optimal catalyst is highly active for the ORR in half‐cells (0.88 V in base and 0.79 V versus RHE in acid in half‐wave potential), a proton exchange membrane fuel cell (0.76 W cm?2 in peak power density) and an aprotic Li–O2 battery (8749 mAh g?1 in discharge capacity), representing a state‐of‐the‐art PGM‐free ORR catalyst. In the material, amorphous carbon with partial graphitization ensures high active site exposure and fast charge transfer simultaneously. Macropores facilitate mass transport to the catalyst surface, followed by oxygen penetration in micropores to reach the infiltrated active sites. Further modeling simulations shed light on the true Fe–Fe3C contribution to the catalyst performance, suggesting Fe3C enhances oxygen affinity, while metallic Fe promotes *OH desorption as the rate‐determining step at the nearby Fe–N–C sites. These findings demonstrate MOFs as model system for rational design of electrocatalyst for energy‐based functional applications.  相似文献   

8.
Highly porous N‐doped carbons have been successfully prepared by using KOH as activating agent and polypyrrole (PPy) as carbon precursor. These materials were investigated as sorbents for CO2 capture. The activation process was carried out under severe (KOH/PPy = 4) or mild (KOH/PPy = 2) activation conditions at different temperatures in the 600–800 °C range. Mildly activated carbons have two important characteristics: i) they contain a large number of nitrogen functional groups (up to 10.1 wt% N) identified as pyridonic‐N with a small proportion of pyridinic‐N groups, and ii) they exhibit, in relation to the carbons prepared with KOH/PPy = 4, narrower micropore sizes. The combination of both of these properties explains the large CO2 adsorption capacities of mildly activated carbon. In particular, a very high CO2 adsorption uptake of 6.2 mmol·g?1 (0 °C) was achieved for porous carbons prepared with KOH/PPy = 2 and 600 °C (1700 m2·g?1, pore size ≈ 1 nm and 10.1 wt% N). Furthermore, we observed that these porous carbons exhibit high CO2 adsorption rates, a good selectivity for CO2‐N2 separation and it can be easily regenerated.  相似文献   

9.
Li–CO2 batteries are regarded as a promising candidate for the next‐generation high‐performance electrochemical energy storage system owing to their ultrahigh theoretical energy density and environmentally friendly CO2 fixation ability. Until now, the majority of reported catalysts for Li–CO2 batteries are in the powder state. Thus, the air electrodes are produced in 2D rigid bulk structure and their electrochemical properties are negatively influenced by binder. The nondeformable feature and unsatisfactory performance of the cathode have already become the main obstacles that hinder Li–CO2 batteries toward ubiquity for wearable electronics. In this work, for the first time, a flexible hybrid fiber is reported comprising highly surface‐wrinkled and N‐doped carbon nanotube (CNT) networks anchored on metal wire as the cathode integrated with high performance and high flexibility for fiber‐shaped Li–CO2 battery. It exhibits a large discharge capacity as high as 9292.3 mAh g?1, an improved cycling performance of 45 cycles, and a decent rate capability. A quasi‐solid‐state flexible fiber‐shaped Li–CO2 battery is constructed to illustrate the advantages on mechanical flexibility of this fiber‐shaped cathode. Experiments and theoretical simulations prove that those doped pyridinic nitrogen atoms play a critical role in facilitating the kinetics of CO2 reduction and evolution reaction, thereby enabling distinctly enhanced electrochemical performance.  相似文献   

10.
Reverse water-gas shift (RWGS) reaction is the initial and necessary step of CO2 hydrogenation to high value-added products, and regulating the selectivity of CO is still a fundamental challenge. In the present study, an efficient catalyst (CuZnNx@C-N) composed by Zn single atoms and Cu clusters stabilized by nitrogen sites is reported. It contains saturated four-coordinate Zn-N4 sites and low valence CuNx clusters. Monodisperse Zn induces the aggregation of pyridinic N to form Zn-N4 and N4 structures, which show strong Lewis basicity and has strong adsorption for *CO2 and *COOH intermediates, but weak adsorption for *CO, thus greatly improves the CO2 conversion and CO selectivity. The catalyst calcined at 700 °C exhibits the highest CO2 conversion of 43.6% under atmospheric pressure, which is 18.33 times of Cu-ZnO and close to the thermodynamic equilibrium conversion rate (49.9%) of CO2. In the catalytic process, CuNx not only adsorbs and activates H2, but also cooperates with the adjacent Zn-N4 and N4 structures to jointly activate CO2 molecules and further promotes the hydrogenation of CO2. This synergistic mechanism will provide new insights for developing efficient hydrogenation catalysts.  相似文献   

11.
An ecofriendly and robust strategy is developed to construct a self‐supported monolithic electrode composed of N‐doped carbon hybridized with bimetallic molybdenum‐tungsten carbide (MoxW2?xC) to form composite nanowires for hydrogen evolution reaction (HER). The hybridization of MoxW2?xC with N‐doped carbon enables effective regulation of the electrocatalytic performance of the composite nanowires, endowing abundant accessible active sites derived from N‐doping and MoxW2?xC incorporation, outstanding conductivity resulting from the N‐doped carbon matrix, and appropriate positioning of the d‐band center with a thermodynamically favorable hydrogen adsorption free energy (ΔGH*) for efficient hydrogen evolution catalysis, which forms a binder‐free 3D self‐supported monolithic electrode with accessible nanopores, desirable chemical compositions and stable composite structure. By modulating the Mo/W ratio, the optimal Mo1.33W0.67C @ NC nanowires on carbon cloth achieve a low overpotential (at a geometric current density of 10 mA cm?2) of 115 and 108 mV and a small Tafel slope of 58.5 and 55.4 mV dec?1 in acidic and alkaline environments, respectively, which can maintain 40 h of stable performance, outperforming most of the reported metal‐carbide‐based HER electrocatalysts.  相似文献   

12.
13.
Highly efficient platinum‐alternative bifunctional catalysts by using abundant non‐noble metal species are of critical importance to the future sustainable energy reserves. Unfortunately, current electrocatalysts toward hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) are far from satisfactory because of lacking reasonable design and assembly protocols. A type of 1‐nm molybdenum carbide nanoparticles confined in mesh‐like nitrogen‐doped carbon (Mo2C@NC nanomesh) with high specific surface area is reported here. In addition to the superior ORR performance comparable to platinum, the catalyst offers a high HER activity with small Tafel slope of 33.7 mV dec?1 and low overpotential of 36 mV to reach ?10 mA cm?2. Theoretical calculations indicate that the active sites of the catalyst are mainly located at Mo atoms adjacent to the N‐doped carbon layer, which contributes the high HER activity. These findings show the great potential of Mo2C species in wide electrocatalysis applications.  相似文献   

14.
Electrochemical carbon dioxide reduction reaction (CO2RR) provides a promising pathway for both decreasing atmospheric CO2 concentration and producing valuable carbon‐based fuels. To explore efficient and cost‐effective catalysts for electrochemical CO2RR is of great importance, but remains challenging. Se‐doped carbon nanosheets (Se‐CNs) with a micro‐, meso‐, and macroporous structure are proposed for electrochemical CO2RR. Such an electrocatalyst combines the advantages of Se optimized active sites, hierarchical pores for facilitating reactant or ion penetration, transport and reaction, and large surface area for more accessible active sites. This Se‐CNs electrocatalyst exhibits over 11‐times enhanced partial current density of CO than the CNs without Se doping and high selectivity (90%) for CO2 electroreduction to CO at a low potential of ?0.6 V versus the reversible hydrogen electrode (vs RHE). Density function theoretical calculations reveal that the Se introduction in CNs lowers the free energy barrier of CO2RR and inhibits hydrogen evolution reaction effectively, thus improving the selectivity for CO2 reduction to CO. This work presents a new member of the metal‐free electrocatalyst family, which is easily prepared, low cost, adjustable, and highly efficient for CO2RR.  相似文献   

15.
Hierarchical nanostructured architectures are demonstrated as an effective approach to develop highly active and bifunctional electrocatalysts, which are urgently required for efficient rechargeable metal–air batteries. Herein, a mesoporous hierarchical flake arrays (FAs) structure grown on flexible carbon cloth, integrated with the microsized nitrogen‐doped carbon (N‐doped C) FAs, nanoscaled P‐doped CoSe2 hollow clusters and atomic‐level P‐doping (P‐CoSe2/N‐C FAs) is described. The P‐CoSe2/N‐C FAs thus developed exhibit a reduced overpotential (≈230 mV at 10 mA cm?2) toward oxygen evolution reaction (OER) and large half‐wave potential (0.87 V) for oxygen reduction reactions. The excellent bifunctional electrocatalytic performance is ascribed to the synergy among the hierarchical flake arrays controlled at both micro‐ and nanoscales, and atomic‐level P‐doping. Density functional theory calculations confirm that the free energy for the potential‐limiting step is reduced by P‐doping for OER. An all‐solid‐state zinc–air battery made of the P‐CoSe2/N‐C FAs as the air‐cathode presents excellent cycling stability and mechanical flexibility, demonstrating the great potential of the hierarchical P‐CoSe2/N‐C FAs for advanced bifunctional electrocatalysis.  相似文献   

16.
Developing single-atom electrocatalysts with high activity and superior selectivity at a wide potential window for CO2 reduction reaction (CO2RR) still remains a great challenge. Herein, a porous Ni N C catalyst containing atomically dispersed Ni N4 sites and nanostructured zirconium oxide (ZrO2@Ni-NC) synthesized via a post-synthetic coordination coupling carbonization strategy is reported. The as-prepared ZrO2@Ni-NC exhibits an initial potential of −0.3 V, maximum CO Faradaic efficiency (F.E.) of 98.6% ± 1.3, and a low Tafel slope of 71.7 mV dec−1 in electrochemical CO2RR. In particular, a wide potential window from −0.7 to −1.4 V with CO F.E. of above 90% on ZrO2@Ni-NC far exceeds those of recently developed state-of-the-art CO2RR electrocatalysts based on Ni N moieties anchored carbon. In a flow cell, ZrO2@Ni-NC delivers a current density of 200 mA cm−2 with a superior CO selectivity of 96.8% at −1.58 V in a practical scale. A series of designed experiments and structural analyses identify that the isolated Ni N4 species act as real active sites to drive the CO2RR reaction and that the nanostructured ZrO2 largely accelerates the protonation process of *CO2 to *COOH intermediate, thus significantly reducing the energy barrier of this rate-determining step and boosting whole catalytic performance.  相似文献   

17.
Electrocatalytic nitrogen reduction reaction (NRR) and hydrogen evolution reaction (HER) are intriguing approaches to nitrogen fixation and hydrogen production under ambient conditions, given the need to discover efficient and stable catalysts to light up the “green chemistry” future. However, bottlenecks are often found during N2/H2O activation, the very first step of NRR/HER, due to energetic electron injection from the surface of electrocatalysts. It is reported that the bottlenecks for both NRR and HER can be tackled by engineering the energy level via low‐valent transition‐metal doping, simultaneously, where rhenium disulfide (ReS2) is employed as a model platform to prove the concept. The doped low‐valent transition‐metal domains (e.g., Fe, Co, Ni, Cu, Zn) in ReS2 provide more active sites for N2/H2O chemisorption and electron transfer, not only weakening the N?N/O? H bonds for easier dissociation through proton coupling, but also elevating d‐band center toward the Fermi level with more electron energy for N2/H2O reduction. As a result, it is found that iron‐doped ReS2 nanosheets wrapped nitrogen‐doped carbon nanofiber (Fe‐ReS2@N‐CNF) catalyst exhibits superior electrochemical activity with eightfold higher ammonia production yield of 80.4 µg h?1 mg?1cat., and lower onset overpotential of 146 mV and Tafel slope of 63 mV dec?1, when comparing with the pristine ReS2.  相似文献   

18.
Dehydrogenation of formic acid (FA) is a promising alternative to fossil fuels, to provide clean energy for the future energy economy. The synthesis of highly active catalysts for FA dehydrogenation at room temperature has attracted a lot of attention. Herein, for the first time, highly active aurum–palladium nanoparticles (AuPd NPs) immobilized on nitrogen (N)‐doped porous carbon are fabricated through a phosphate‐mediation approach. The N‐doped carbon anchored with phosphate, which can be removed in alkaline solution during the reduction process of metal ions, shows an enhanced performance of absorbing and dispersion of both Au and Pd ions, which is a key to the synthesis of highly dispersed ultrafine AuPd NPs. The as‐prepared catalyst (designated as Au2Pd3@(P)N‐C) exhibits an extraordinarily high turnover frequency of 5400 h?1 and a 100% H2 selectivity for FA dehydrogenation at 30 °C. This phosphate‐mediation approach provides a new way to fabricate highly active metal NPs for catalytic application, pushing heterogeneous catalysts forward for practical usage in energy storage and conversion.  相似文献   

19.
Developing earth‐abundant, active, and robust electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a vital challenge for efficient conversion of sustainable energy sources. Herein, metal–semiconductor hybrids are reported with metallic nanoalloys on various defective oxide nanowire arrays (Cu/CuOx, Co/CoOx, and CuCo/CuCoOx) as typical Mott–Schottky electrocatalysts. To build the highway of continuous electron transport between metals and semiconductors, nitrogen‐doped carbon (NC) has been implanted on metal–semiconductor nanowire array as core–shell conductive architecture. As expected, NC/CuCo/CuCoOx nanowires arrays, as integrated Mott–Schottky electrocatalysts, present an overpotential of 112 mV at 10 mA cm?2 and a low Tafel slope of 55 mV dec?1 for HER, simultaneously delivering an overpotential of 190 mV at 10 mA cm?2 for OER. Most importantly, NC/CuCo/CuCoOx architectures, as both the anode and the cathode for overall water splitting, exhibit a current density of 10 mA cm?2 at a cell voltage of 1.53 V with excellent stability due to high conductivity, large active surface area, abundant active sites, and the continuous electron transport from prominent synergetic effect among metal, semiconductor, and nitrogen‐doped carbon. This work represents an avenue to design and develop efficient and stable Mott–Schottky bifunctional electrocatalysts for promising energy conversion.  相似文献   

20.
Heteroatom doping plays a significant role in optimizing the catalytic performance of electrocatalysts. However, research on heteroatom doped electrocatalysts with abundant defects and well‐defined morphology remain a great challenge. Herein, a class of defect‐engineered nitrogen‐doped Co3O4 nanoparticles/nitrogen‐doped carbon framework (N‐Co3O4@NC) strongly coupled porous nanocubes, made using a zeolitic imidazolate framework‐67 via a controllable N‐doping strategy, is demonstrated for achieving remarkable oxygen evolution reaction (OER) catalysis. X‐ray photoelectron spectroscopy, X‐ray absorption fine structure, and electron spin resonance results clearly reveal the formation of a considerable amount of nitrogen dopants and oxygen vacancies in N‐Co3O4@NC. The defect engineering of N‐Co3O4@NC makes it exhibit an overpotential of only 266 mV to reach 10 mA cm?2, a low Tafel slope of 54.9 mV dec?1 and superior catalytic stability for OER, which is comparable to that of commercial RuO2. Density functional theory calculations indicate N‐doping could promote catalytic activity via improving electronic conductivity, accelerating reaction kinetics, and optimizing the adsorption energy for intermediates of OER. Interestingly, N‐Co3O4@NC also shows a superior oxygen reduction reaction activity, making it a bifunctional electrocatalyst for zinc–air batteries. The zinc–air battery with the N‐Co3O4@NC cathode demonstrates superior efficiency and durability, showing the feasibility of N‐Co3O4/NC in electrochemical energy devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号