首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2D perovskites have attracted extensive attention due to their excellent stability compared with 3D perovskites. However, the intrinsic hydrophilicity of introduced alkylammonium salts effects the humidity stability of 2D/3D perovskites. Devices based on longer chain alkylammonium salts show improvement in hydrophobicity but lower efficiency due to the poorer charge transport among various layers. To solve this issue, two hydrophobic short‐chain alkylammonium salts with halogen functional groups (2‐chloroethylamine, CEA+ and 2‐bromoethylamine, BEA+) are introduced into (Cs0.1FA0.9)Pb(I0.9Br0.1)3 3D perovskites to form 2D/3D perovskite structure, which achieve high‐quality perovskite films with better crystallization and morphology. The optimal 2D/3D perovskite solar cells (PSCs) with 5% CEA+ display a power conversion efficiency (PCE) as high as 20.08% under 1 sun irradiation. Because of the notable hydrophobicity of alkylammonium cations with halogen functional groups and the formed 2D/3D perovskite structure, the optimal PSCs exhibit superior moisture resistance and retain 92% initial PCE after aging at 50 ± 5% relative humidity for 2400 h. This work opens up a new direction for the design of new‐type 2D/3D PSCs with improved performance by employing proper alkylammonium salts with different functional groups.  相似文献   

2.
The grain boundaries (GBs)/surface defects within perovskite film directly impede the further improvement of photoelectric conversion efficiency (PCE) and stability of planar perovskite solar cells (PSCs). Herein, 3D phytic acid (PA) and phytic acid dipotassium (PAD) with polydentate are explored to synchronously passivate the defects of perovskite absorber directly in multiple spatial directions. The strong electron-donating groups ( H2PO4) in the PA molecule afford six anchor sites to bind firmly with uncoordinated Pb2+ at the GBs/surface and modulate perovskite crystallization, thus enhancing the quality of perovskite film. Particularly, PAD containing an additional (K→PO) push–pull structure promotes the dominant coordination of phosphate group (PO) with Pb2+ and passivates halide anion defects due to the complexation of potassium ions (K+) with iodide ions (I-). Consequently, the PAD-complexed PSCs deliver a champion PCE of 23.18%, which is remarkably higher than that of the control device (19.94%). Meanwhile, PAD-complexed PSCs exhibit superior moisture and thermal stability, remaining 79% of their initial PCE after 1000 h under continuous illumination, while the control device remain only 48% of their PCE after 1000 h. This work provides important insights into designing multifunctional 3D passivators for the purpose of simultaneously enhancing the efficiency and stability of devices.  相似文献   

3.
Perovskite solar cells (PSCs) are highly promising next‐generation photovoltaic devices because of the cheap raw materials, ideal band gap of ≈1.5 eV, broad absorption range, and high absorption coefficient. Although lead‐based inorganic‐organic PSC has achieved the highest power conversion efficiency (PCE) of 25.2%, the toxic nature of lead and poor stability strongly limits the commercialization. Lead‐free inorganic PSCs are potential alternatives to toxic and unstable organic‐inorganic PSCs. Particularly, double‐perovskite Cs2AgBiBr6‐based PSC has received interests for its all inorganic and lead‐free features. However, the PCE is limited by the inherent and extrinsic defects of Cs2AgBiBr6 films. Herein, an effective and facile strategy is reported for improving the PCE and stability by introducing an N719 dye interlayer, which plays multifunctional roles such as broadening the absorption spectrum, suppressing the charge carrier recombination, accelerating the hole extraction, and constructing an appropriate energy level alignment. Consequently, the optimizing cell delivers an outstanding PCE of 2.84%, much improved as compared with other Cs2AgBiBr6‐based PSCs reported so far in the literature. Moreover, the N719 interlayer greatly enhances the stability of PSCs under ambient conditions. This work highlights a useful strategy to boost the PCE and stability of lead‐free Cs2AgBiBr6‐based PSCs simultaneously, accelerating the commercialization of PSC technology.  相似文献   

4.
2D halide perovskites have recently been recognized as a promising avenue in perovskite solar cells (PSCs) in terms of encouraging stability and defect passivation effect. However, the efficiency (less than 15%) of ultrastable 2D Ruddlesden–Popper PSCs still lag far behind their traditional 3D perovskite counterparts. Here, a rationally designed 2D‐3D perovskite stacking‐layered architecture by in situ growing 2D PEA2PbI4 capping layers on top of 3D perovskite film, which drastically improves the stability of PSCs without compromising their high performance, is reported. Such a 2D perovskite capping layer induces larger Fermi‐level splitting in the 2D‐3D perovskite film under light illumination, resulting in an enhanced open‐circuit voltage (Voc) and thus a higher efficiency of 18.51% in the 2D‐3D PSCs. Time‐resolved photoluminescence decay measurements indicate the facilitated hole extraction in the 2D‐3D stacking‐layered perovskite films, which is ascribed to the optimized energy band alignment and reduced nonradiative recombination at the subgap states. Benefiting from the high moisture resistivity as well as suppressed ion migration of the 2D perovskite, the 2D‐3D PSCs show significantly improved long‐term stability, retaining nearly 90% of the initial power conversion efficiency after 1000 h exposure in the ambient conditions with a high relative humidity level of 60 ± 10%.  相似文献   

5.
Recent progress of vapor-deposited perovskite solar cells (PSCs) has proved the feasibility of this deposition method in achieving promising photovoltaic devices. For the first time, it is probed the versatility of the co-evaporation process in creating perovskite layers customizable for different device architectures. A gradient of composition is created within the perovskite films by tuning the background chamber pressure during the growth process. This method leads to co-evaporated MAPbI3 film with graded Fermi levels across the thickness. Here it is proved that this growth process is beneficial for p-i-n PSCs as it can guarantee a favorable energy alignment at the charge selective interfaces. Co-evaporated p-i-n PSCs, with different hole transporting layers, consistently achieve power conversion efficiency (PCE) over 20% with a champion value of 20.6%, one of the highest reported to date. The scaled-up p-i-n PSCs, with active areas of 1 and 1.96 cm2, achieved the record PCEs of 19.1% and 17.2%, respectively, while the flexible PSCs reached a PCE of 19.3%. Unencapsulated PSCs demonstrate remarkable long-term stability, retaining ≈90% of their initial PCE when stored in ambient for 1000 h. These PSCs also preserve over 80% of their initial PCE after 500 h of thermal aging at 85 °C.  相似文献   

6.
Organic-inorganic hybrid perovskite solar cells (PSCs) have rapidly developed over the past decade and have achieved the latest certified power conversion efficiency (PCE) up to 25.5%. However, unsatisfactory long-term operational stability for these hybrid PSCs remains a huge obstacle to further development and commercialization. Herein, a unique hetero-structured CsPbI3/CaF2 perovskite/fluoride nanocomposites (PFNCs) is fabricated via a newly developed facile two-step hetero-epitaxial growth strategy to deliver efficient and ultra-stable PSCs. After being incorporated into the crystal lattice of α-phase CsPbI3 perovskite, the cubic-phase CaF2 in the resultant CsPbI3/CaF2 PFNCs can not only passivate the intrinsic defects of CsPbI3 perovskite itself but also effectively suppress the notorious ion migration in hybrid perovskite Cs0.05FA0.81MA0.14PbI2.55Br0.45 (CsFAMA) thin-films of PSCs. As such, the CsFAMA PSC devices based on CsPbI3/CaF2-deposited perovskite thin-film achieve a mean PCE of 20.45%, in sharp contrast to 19.33% of the control devices without deposition. Specifically, the CsPbI3/CaF2-deposited PSC retains 85% of its original PCE after 1000 h continuous operation at the maximum power point under AM 1.5G solar light, far better than those of the control and CsPbI3-deposited PSCs with a device T85 lifetime of 315 and 125 h, respectively.  相似文献   

7.
Tri‐cation and dual‐anion mixed perovskites have been widely utilized in perovskite solar cell (PSC) applications due to their novel properties such as high absorption, high stability, and low cost. To commercialize the PSCs, further improving the device performance without detrimentally changing the device configuration is important at present. Herein, Au@SiO2 nanoparticles (NPs) are introduced to modify the interface between mesoporous TiO2 (mp‐TiO2) and mixed perovskite with increased main photovoltaic parameters of the device, resulting in a ≈29% enhancement of power conversion efficiency (PCE) from 15.8% to 20.3%. The origins of the enhancement have been studied by exploring the optical absorption, optical power distribution, and charge carrier behaviors within the system. The small perturbation transient photovoltage measurement exhibits prolonged charge carrier lifetimes after the Au@SiO2 NPs incorporation, and time of flight photoconductivity measurement shows that charge carrier mobilities of this system are also enhanced. These characteristics make metallic nanostructures a promising functional material in facile tuning of the charge carriers transport and further boosting the PCE of the PSCs.  相似文献   

8.
Organic–inorganic metal halide perovskite solar cells (PSCs) have attracted much research interest owing to their high power conversion efficiency (PCE), solution processability, and the great potential for commercialization. However, the device performance is closely related to the quality of the perovskite film and the interface properties, which cannot be easily controlled by solution processes. Here, 2D WS2 flakes with defect‐free surfaces are introduced as a template for van der Waals epitaxial growth of mixed perovskite films by solution process for the first time. The mixed perovskite films demonstrate a preferable growth along (001) direction on WS2 surfaces. In addition, the WS2/perovskite heterojunction forms a cascade energy alignment for efficient charge extraction and reduced interfacial recombination. The inverted PSCs with WS2 interlayers show high PCEs up to 21.1%, which is among the highest efficiency of inverted planar PSCs. This work demonstrates that high‐mobility 2D materials can find important applications in PSCs as well as other perovskite‐based optoelectronic devices.  相似文献   

9.
Despite being a promising candidate for next‐generation photovoltaics, perovskite solar cells (PSCs) exhibit limited stability that hinders their practical application. In order to improve the humidity stability of PSCs, herein, a series of ionic liquids (ILs) “1‐alkyl‐4‐amino‐1,2,4‐triazolium” (termed as RATZ; R represents alkyl chain, and ATZ represents 4‐amino‐1,2,4‐triazolium) as cations are designed and used as additives in methylammonium lead iodide (MAPbI3) perovskite precursor solution, obtaining triazolium ILs‐modified PSCs for the first time (termed as MA/RATZ PSCs). As opposed to from traditional methods that seek to improve the stability of PSCs by functionalizing perovskite film with hydrophobic molecules, humidity‐stable perovskite films are prepared by exploiting the self‐assembled monolayer (SAM) formation of water‐soluble triazolium ILs on a hydrophilic perovskite surface. The mechanism is validated by experimental and theoretical calculation. This strategy means that the MA/RATZ devices exhibit good humidity stability, maintaining around 80% initial efficiency for 3500 h under 40 ± 5% relative humidity. Meanwhile, the MA/RATZ PSCs exhibit enhanced thermal stability and photostability. Tuning the molecule structure of the ILs additives achieves a maximum power conversion efficiency (PCE) of 20.03%. This work demonstrates the potential of using triazolium ILs as additives and SAM and molecular design to achieve high performance PSCs.  相似文献   

10.
Perovskite solar cells (PSCs) have received great attention due to their outstanding performance and their low processing costs. To boost their performance, one approach is to reinforce the built‐in electric field (BEF) to promote oriented carrier transport. The BEF is maximized by reinforcing the work function difference between cathode and anode (Δμ1) and increasing the work function difference between lower and upper surfaces of perovskite film (Δμ2) via introduction of electric dipole molecules, denoted as PTFCN and CF3BACl. The synergistic reinforcement of BEF improves charge transport and collection, and realizes markedly high photovoltaic performances with the best power conversion efficiency (PCE) up to 21.5%, a growth of 15.6% as compared to the control device, which is higher than the superposition of improvements achieved by either raising Δμ1 or Δμ2. Importantly, dual‐functional CF3BACl not only supplies dipole effect for tuning the surface potential of perovskite but offers hydrophobic trifluoride group toward the long‐term stable unencapsulated PSCs retaining more than 95% PCE after storing 2000 h under ambient conditions. This work demonstrates the synergistic effect of Δμ1 and Δμ2, providing an effective strategy for the further development of PSC in terms of photovoltaic conversion and stability.  相似文献   

11.
The control of film morphology is crucial in achieving high‐performance perovskite solar cells (PSCs). Herein, the crystals of the perovskite films are reconstructed by post‐treating the MAPbI3 devices with methylamine gas, yielding a homogeneous nucleation and crystallization of the perovskite in the triple mesoscopic inorganic layers structured PSCs. As a result, a uniform, compact, and crystalline perovskite layer is obtained after the methylamine gas post‐treatment, yielding high power conversion efficiency (PCE) of 15.26%, 128.8% higher than that of the device before processing. More importantly, this post‐treatment process allows the regeneration of the photodegraded PSCs via the crystal reconstruction and the PCE can recover to 91% of the initial value after two cycles of the photodegradation‐recovery process. This simple method allows for the regeneration of perovskite solar cells on site without reconstruction or replacing any components, thus prolonging the service life of the perovskite solar cells and distinguishing from any other photovoltaic devices in practice.  相似文献   

12.
Organolead halide perovskite solar cells (PSC) are arising as promising candidates for next‐generation renewable energy conversion devices. Currently, inverted PSCs typically employ expensive organic semiconductor as electron transport material and thermally deposited metal as cathode (such as Ag, Au, or Al), which are incompatible with their large‐scale production. Moreover, the use of metal cathode also limits the long‐term device stability under normal operation conditions. Herein, a novel inverted PSC employs a SnO2‐coated carbon nanotube (SnO2@CSCNT) film as cathode in both rigid and flexible substrates (substrate/NiO‐perovskite/Al2O3‐perovskite/SnO2@CSCNT‐perovskite). Inverted PSCs with SnO2@CSCNT cathode exhibit considerable enhancement in photovoltaic performance in comparison with the devices without SnO2 coating owing to the significantly reduced charge recombination. As a result, a power conversion efficiency of 14.3% can be obtained on rigid substrates while the flexible ones achieve 10.5% efficiency. More importantly, SnO2@CSCNT‐based inverted PSCs exhibit significantly improved stability compared to the standard inverted devices made with silver cathode, retaining over 88% of their original efficiencies after 550 h of full light soaking or thermal stress. The results indicate that SnO2@CSCNT is a promising cathode material for long‐term device operation and pave the way toward realistic commercialization of flexible PSCs.  相似文献   

13.
Compared with silicon‐based solar cells, organic–inorganic hybrid perovskite solar cells (PSCs) possess a distinct advantage, i.e., its application in the flexible field. However, the efficiency of the flexible device is still lower than that of the rigid one. First, it is found that the dense formamidinium (FA)‐based perovskite film can be obtained with the help of N‐methyl‐2‐pyrrolidone (NMP) via low pressure‐assisted method. In addition, CH3NH3Cl (MACl) as the additive can preferentially form MAPbCl3?xIx perovskite seeds to induce perovskite phase transition and crystal growth. Finally, by using FAI·PbI2·NMP+x%MACl as the precursor, i.e., ligand and additive synergetic process, a FA‐based perovskite film with a large grain size, high crystallinity, and low trap density is obtained on a flexible substrate under ambient conditions due to the synergetic effect, e.g., MACl can enhance the crystallization of the intermediate phase of FAI·PbI2·NMP. As a result, a record efficiency of 19.38% in flexible planar PSCs is achieved, and it can retain about 89% of its initial power conversion efficiency (PCE) after 230 days without encapsulation under ambient conditions. The PCE retains 92% of the initial value after 500 bending cycles with a bending radii of 10 mm. The results show a robust way to fabricate highly efficient flexible PSCs.  相似文献   

14.
Perovskite solar cells (PSCs) are one of the most promising solar energy conversion technologies owing to their rapidly developing power conversion efficiency (PCE). Low‐temperature solution processing of the perovskite layer enables the fabrication of flexible devices. However, their application has been greatly hindered due to the lack of strategies to fabricate high‐quality electron transport layers (ETLs) at the low temperatures (≈100 °C) that most flexible plastic substrates can withstand, leading to poor performances for flexible PSCs. In this work, through combining the spin‐coating process with a hydrothermal treatment method, ligand‐free and highly crystalline SnO2 ETLs are successfully fabricated at low temperature. The flexible PSCs based on this SnO2 ETL exhibit an excellent PCE of 18.1% (certified 17.3%). The flexible PSCs maintained 85% of the initial PCE after 1000 bending cycles and over 90% of the initial PCE after being stored in ambient air for 30 days without encapsulation. The investigation reveals that hydrothermal treatment not only promotes the complete removal of organic surfactants coated onto the surface of the SnO2 nanoparticles by hot water vapor but also enhances crystallization through the high vapor pressure of water, leading to the formation of high‐quality SnO2 ETLs.  相似文献   

15.
Surface defects cause non-radiative charge recombination and reduce the photovoltaic performance of perovskite solar cells (PSCs), thus effective passivation of defects has become a crucial method for achieving efficient and stable devices. Organic ammonium halides have been widely used for perovskite surface passivation, due to their simple preparation, lattice matching with perovskite, and high defects passivation ability. Herein, a surface passivator 2,4,6-trimethylbenzenaminium iodide (TMBAI) is employed as the interfacial layer between the spiro-OMeTAD and perovskite layer to modify the surface defect states. It is found that TMBAI treatment suppresses the nonradiative charge carrier recombination, resulting in a 60 mV increase of the open-circuit voltage (Voc) (from 1.11 to 1.17 V) and raises the fill factor from 76.3% to 80.3%. As a result, the TMBAI-based PSCs device demonstrates a power conversion efficiency (PCE) of 23.7%. Remarkably, PSCs with an aperture area of 1 square centimeter produce a PCE of 21.7% under standard AM1.5 G sunlight. The unencapsulated TMBAI-modified device retains 92.6% and 90.1% of the initial values after 1000 and 550 h under ambient conditions (humidity 55%–65%) and one-sun continuous illumination, respectively.  相似文献   

16.
Perovskite surface treatment with additives has been reported to improve charge extraction, stability, and/or surface passivation. In this study, treatment of a 3D perovskite ((FAPbI3)1−x(MAPbBr3)x) layer with a thienothiophene-based organic cation (TTMAI), synthesized in this work, is investigated. Detailed analyses reveal that a 2D (n = 1) or quasi-2D layer does not form on the PbI2-rich surface 3D perovskite. TTMAI-treated 3D perovskite solar cells (PSCs) fabricated in this study show improved fill factors, providing an increase in their power conversion efficiencies (PCEs) from 17% to over 20%. It is demonstrated that the enhancement is due to better hole extraction by drift-diffusion simulations. Furthermore, thanks to the hydrophobic nature of the TTMAI, PSC maintains 82% of its initial PCE under 15% humidity for over 380 h (the reference retains 38%). Additionally, semitransparent cells are demonstrated reaching 17.9% PCE with treated 3D perovskite, which is one of the highest reported efficiencies for double cationic 3D perovskites. Moreover, the semitransparent 3D PSC (TTMAI-treated) maintains 87% of its initial efficiency for six weeks (>1000 h) when kept in the dark at room temperature. These results clearly show that this study fills a critical void in perovskite research where highly efficient and stable semitransparent perovskite solar cells are scarce.  相似文献   

17.
Dopant‐free hole transport materials (HTMs) are essential for commercialization of perovskite solar cells (PSCs). However, power conversion efficiencies (PCEs) of the state‐of‐the‐art PSCs with small molecule dopant‐free HTMs are below 20%. Herein, a simple dithieno[3,2‐b:2′,3′‐d]pyrrol‐cored small molecule, DTP‐C6Th, is reported as a promising dopant‐free HTM. Compared with commonly used spiro‐OMeTAD, DTP‐C6Th exhibits a similar energy level, a better hole mobility of 4.18 × 10?4 cm2 V?1 s?1, and more efficient hole extraction, enabling efficient and stable PSCs with a dopant‐free HTM. With the addition of an ultrathin poly(methyl methacrylate) passivation layer and properly tuning the composition of the perovskite absorber layer, a champion PCE of 21.04% is achieved, which is the highest value for small molecule dopant‐free HTM based PSCs to date. Additionally, PSCs using the DTP‐C6Th HTM exhibit significantly improved long‐term stability compared with the conventional cells with the metal additive doped spiro‐OMeTAD HTM. Therefore, this work provides a new candidate and effective device engineering strategy for achieving high PCEs with dopant‐free HTMs.  相似文献   

18.
In this review, the factors influencing the power conversion efficiency (PCE) of perovskite solar cells (PSCs) is emphasized. The PCE of PSCs has remarkably increased from 3.8% to 23.7%, but on the other hand, poor stability is one of the main facets that creates a huge barrier in the commercialization of PSCs. Herein, a concise overview of the current efforts to enhance the stability of PSCs is provided; moreover, the degradation causes and mechanisms are summarized. The strategies to improve device stability are portrayed in terms of structural effects, a photoactive layer, hole‐ and electron‐transporting layers, electrode materials, and device encapsulation. Last but not least, the economic feasibility of PSCs is also vividly discussed.  相似文献   

19.
Recently, perovskite solar cells (PSC) with high power‐conversion efficiency (PCE) and long‐term stability have been achieved by employing 2D perovskite layers on 3D perovskite light absorbers. However, in‐depth studies on the material and the interface between the two perovskite layers are still required to understand the role of the 2D perovskite in PSCs. Self‐crystallization of 2D perovskite is successfully induced by deposition of benzyl ammonium iodide (BnAI) on top of a 3D perovskite light absorber. The self‐crystallized 2D perovskite can perform a multifunctional role in facilitating hole transfer, owing to its random crystalline orientation and passivating traps in the 3D perovskite. The use of the multifunctional 2D perovskite (M2P) leads to improvement in PCE and long‐term stability of PSCs both with and without organic hole transporting material (HTM), 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenyl‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) compared to the devices without the M2P.  相似文献   

20.
The optoelectronic properties of perovskite films are closely related to the film quality, so depositing dense, uniform, and stable perovskite films is crucial for fabricating high‐performance perovskite solar cells (PSCs). CsPbI2Br perovskite, prized for its superb stability toward light soaking and thermal aging, has received a great deal of attention recently. However, the air instability and poor performance of CsPbI2Br PSCs are hindering its further progress. Here, an approach is reported for depositing high‐quality CsPbI2Br films via the Lewis base adducts PbI2(DMSO) and PbBr2(DMSO) as precursors to slow the crystallization of the perovskite film. This process produces CsPbI2Br films with large‐scale crystalline grains, flat surfaces, low defects, and long carrier lifetimes. More interestingly, PbI2(DMSO) and PbBr2(DMSO) adducts could significantly improve the stability of CsPbI2Br films in air. Using films prepared by this technique, a power conversion efficiency (PCE) of 14.78% is obtained in CsPbI2Br PSCs, which is the highest PCE value reported for CsPbI2Br‐based PSCs to date. In addition, the PSCs based on DMSO adducts show an extended operational lifetime in air. These excellent performances indicate that preparing high‐quality inorganic perovskite films by using DMSO adducts will be a potential method for improving the performance of other inorganic PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号