首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
2.
Iontronic graphene tactile sensors (i‐GTS) composed of a top floating graphene electrode and an ionic liquid droplet pinned on a bottom graphene grid, which can dramatically enhance the performance of capacitive‐type tactile sensors, are presented. When mechanical stress is applied to the top floating electrode, the i‐GTS operates in one of the following three regimes: air–air, air–electric double layer (EDL) transition, or EDL–EDL. Once the top electrode contacts the ionic liquid in the i‐GTS, the spreading behavior of the ionic liquid causes a capacitance transition (from a few pF to over hundreds of pF). This is because EDLs are formed at the interfaces between the electrodes and the ionic liquid. In this case, the pressure sensitivity increases to ≈31.1 kPa?1 with a gentle touch. Under prolonged application of pressure, the capacitance increases gradually, mainly due to the contact line expansion of the ionic liquid bridge pinned on the graphene grid. The sensors exhibit outstanding properties (response and relaxation times below 80 ms, and stability over 300 cycles) while demonstrating ultimate signal‐to‐noise ratios in the array tests. The contact‐induced spreading behavior of the ionic liquid is the key for boosting the sensor performance.  相似文献   

3.
4.
Inspired by the human skin, electronic skins (e-skins) composed of various flexible sensors, such as strain sensor, pressure sensor, shear force sensor, temperature sensor, and humility sensor, and delicate circuits, are emerged to mimic the sensing functions of human skins. In this review, the strategies to realize the versatile functionalities of natural skin-like e-skins, including strain-, pressure-, shear force-, temperature- and humility-sensing abilities, as well as self-healing ability and other functions are summarized. Some representative examples of high-performance e-skins and their applications are outlined and discussed. Finally, the outlook of the future of e-skins is presented.  相似文献   

5.
Conductive polymer hydrogels are receiving considerable attention in applications such as soft robots and human-machine interfaces. Herein, a transparent and highly ionically conductive hydrogel that integrates sensing, UV-filtering, water-retaining, and anti-freezing performances is achieved by the organic combination of tannic acid-coated hydroxyapatite nanowires (TA@HAP NWs), polyvinyl alcohol (PVA) chains, ethylene glycol (EG), and metal ions. The highly ionic conductivity of the hydrogel enables tensile strain, pressure, and temperature sensing capabilities. In particular, in terms of the hydrogel strain sensors based on ionic conduction, it has high sensitivity (GF = 2.84) within a wide strain range (350%), high linearity (R2 = 0.99003), fast response (≈50 ms) and excellent cycle stability. In addition, the incorporated TA@HAP NWs act as a nano-reinforced filler to improve the mechanical properties and confer a UV-shielding ability upon the hydrogel due to its size effect and the characteristics of absorbing ultraviolet light waves, which can reflect and absorb short ultraviolet rays and transmit visible light. Meanwhile, owing to the water-locking effect between EG and water molecules, the hydrogel exhibits freezing resistance at low temperatures and moisture retention at high temperatures. This biocompatible and multifunctional conductive hydrogel provides new ideas for the design of novel ionic skin devices.  相似文献   

6.
Electronic skin (e-skin) is driving significant advances in flexible electronics as it holds great promise in health monitoring, human–machine interfaces, soft robotics, and so on. Flexible sensors that can detect various stimuli or have multiple properties play an indispensable role in e-skin. Despite tremendous research efforts devoted to flexible sensors with excellent performance regarding a certain sensing mode or property, emerging e-skin demands multifunctional flexible sensors to be endowed with the skin-like capability and beyond. Considering outstanding superiorities of electrical conductivity, chemical stability, and ease of functionalization, carbon materials are adopted to implement multifunctional flexible sensors. In this review, the latest advances of carbon-based multifunctional flexible sensors with regard to the types of detection modes and abundant properties are introduced. The corresponding preparation process, device structure, sensing mechanism, obtained performance, and intriguing applications are highlighted. Furthermore, diverse e-skin systems by integrating current cutting-edge technologies (e.g., data acquisition and transmission, neuromorphic technology, and artificial intelligence) with carbon-based multifunctional flexible sensors are systematically investigated in detail. Finally, the existing problems and future developing directions are also proposed.  相似文献   

7.
This report demonstrates a wearable elastomer‐based electronic skin including resistive sensors for monitoring finger articulation and capacitive tactile pressure sensors that register distributed pressure along the entire length of the finger. Pressure sensitivity in the order of 0.001 to 0.01 kPa?1 for pressures from 5 to 405 kPa, which includes much of the range of human physiological sensing, is achieved by implementing soft, compressible silicone foam as the dielectric and stretchable thin‐metal films. Integrating these sensors in a textile glove allows the decoupling of the strain and pressure cross‐sensitivity of the tactile sensors, enabling precise grasp analysis. The sensorized glove is implemented in a human‐in‐the‐loop system for controlling the grasp of objects, a critical step toward hand prosthesis with integrated sensing capabilities.  相似文献   

8.
MXenes are an emerging class of 2D transition metal carbides and nitrides. They have been widely used in flexible electronics owing to their excellent conductivity, mechanical flexibility, and water dispersibility. In this study, the electrode and active layer applications of MXene materials in electronic skins are realized. By utilizing vacuum filtration technology, few-layer MXene electrodes are integrated onto the top and bottom surfaces of the 3D polyacrylonitrile (PAN) network to form a stable electronic skin. The fabricated flexible device with Ti3C2Tx MXene electrodes outperforms those with other electrodes and exhibits excellent device performance, with a high sensitivity of 104.0 kPa−1, fast response/recovery time of 30/20 ms, and a low detection limit of 1.5 Pa. Furthermore, the electrode and the constructed MXene/PAN-based flexible pressure sensor exhibit robust mechanical stability and can survive 240 bending cycles. Such a robust, flexible device can be enlarged or folded like a jigsaw puzzle or origami and transformed from 2D to 3D structures; moreover, it can detect tiny movements of human muscles, such as movements corresponding to sound production and intense movements during bending of fingers.  相似文献   

9.
为解决凝胶聚合物电解质制成膜的双电层电容器中,电解质与电极真实表面积接触较差的问题,采用内聚合法制备了以活性炭为电极材料,丙烯腈为聚合单体,ζ(碳酸甲乙酯∶碳酸乙烯酯)=1∶1为增塑剂,高氯酸锂为导电盐的凝胶聚合物电解质双电层电容器。测试结果表明,随着丙烯腈含量的降低,其组成的凝胶聚合物电解质的电导率增大,电容器的比容量也随之增大,当w(丙烯腈)为10%时,室温电导率为9.34×10–3S·cm–1,比容量为24.294F/g。  相似文献   

10.
A flexible yet electronically active composite that mimics mechanoreceptor neurons in the human skin is synthesized, generating voltage oscillations whose frequency increases with pressure. By encoding pressure into frequency, the sensor achieves a high pressure sensitivity (<10 Pa). The ability to sense pressure and to amplify signals arises from the robust negative differential resistance of functionalized graphitic flakes in silicone.  相似文献   

11.
With the rapid advancement in artificial intelligence, wearable electronic skins have attracted substantial attention. However, the fabrication of such devices with high elasticity and breathability is still a challenge and highly desired. Here, a route to develop an all‐fiber structured electronic skin with a scalable electrospinning fabrication technique is reported. The fabricated electronic skin is demonstrated to exhibit high pressure sensing with a sensitivity of 0.18 V kPa?1 in the detection range of 0–175 kPa. This wearable device could maintain prominent sensing performance and mechanical stability in the presence of large deformation, even when the elastic deformation is up to 50%. The electronic skin is easily conformable on different desired objects for real‐time spatial mapping and long‐term tactile sensing. Besides, it possesses high gas permeability with a water vapor transmittance rate of 10.26 kg m?2 d?1. More importantly, the electronic skin is capable of working in a self‐powered manner and even serves as a reliable power source to effectively drive small electronics. Possessing several compelling features, such as high sensitivity, high elasticity, high breathability as well as being self‐powered and scalable in fabrication, the presented device paves a pathway for smart electronic skins.  相似文献   

12.
Natural living systems such as wood frogs develop tissues composed of active hydrogels with cryoprotectants to survive in cold environments. Recently, hydrogels have been intensively studied to develop stretchable electronics for wearables and soft robots. However, regular hydrogels are inevitably frozen at the subzero temperature and easily dehydrated, and have weak surface adhesion. Herein, a novel hydrogel-based ionic skin (iSkin) capable of strain sensing is demonstrated with high toughness, high stretchability, excellent ambient stability, superior anti-freezing capability, and strong surface adhesion. The iSkin consists of a piece of ionically and covalently cross-linked tough hydrogel with a thin bioadhesive layer. With the addition of biocompatible cryoprotectant and electrolyte, the iSkin shows good conductivity in wide ranges of relative humidity (15–90%) and temperature (−95–25 °C). In addition, the iSkin can adhere firmly to diverse material surfaces under different conditions, including cloth fabric, skin, and elastomers, in both dry and wet conditions, at subzero temperature, and/or with dynamic movement. The iSkin is demonstrated for applications including strain sensing on both human body and winter coat, human–machine interaction, motion/deformation sensing on a soft gripper and a soft robot at extremely cold conditions. This work provides a new paradigm for developing high-performance artificial skins for wearable sensing and soft robotics.  相似文献   

13.
High energy density, durability, and flexibility of supercapacitors are required urgently for the next generation of wearable and portable electronic devices. Herein, a novel strategy is introduced to boost the energy density of flexible soild‐state supercapacitors via rational design of hierarchically graphene nanocomposite (GNC) electrode material and employing an ionic liquid gel polymer electrolyte. The hierarchical graphene nanocomposite consisting of graphene and polyaniline‐derived carbon is synthesized as an electrode material via a scalable process. The meso/microporous graphene nanocomposites exhibit a high specific capacitance of 176 F g?1 at 0.5 A g?1 in the ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) with a wide voltage window of 3.5 V, good rate capability of 80.7% in the range of 0.5–10 A g?1 and excellent stability over 10 000 cycles, which is attributed to the superior conductivity (7246 S m?1), and quite large specific surface area (2416 m2 g?1) as well as hierarchical meso/micropores distribution of the electrode materials. Furthermore, flexible solid‐state supercapacitor devices based on the GNC electrodes and gel polymer electrolyte film are assembled, which offer high specific capacitance of 180 F g?1 at 1 A g?1, large energy density of 75 Wh Kg?1, and remarkable flexible performance under consecutive bending conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号