首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Over the past decade, near‐infrared (NIR)‐emitting nanoparticles have increasingly been investigated in biomedical research for use as fluorescent imaging probes. Here, high‐quality water‐dispersible core/shell/shell PbS/CdS/ZnS quantum dots (hereafter QDs) as NIR imaging probes fabricated through a rapid, cost‐effective microwave‐assisted cation exchange procedure are reported. These QDs have proven to be water dispersible, stable, and are expected to be nontoxic, resulting from the growth of an outer ZnS shell and the simultaneous surface functionalization with mercaptopropionic acid ligands. Care is taken to design the emission wavelength of the QDs probe lying within the second biological window (1000–1350 nm), which leads to higher penetration depths because of the low extinction coefficient of biological tissues in this spectral range. Furthermore, their intense fluorescence emission enables to follow the real‐time evolution of QD biodistribution among different organs of living mice, after low‐dose intravenous administration. In this paper, QD platform has proven to be capable (ex vivo and in vitro) of high‐resolution thermal sensing in the physiological temperature range. The investigation, together with the lack of noticeable toxicity from these PbS/CdS/ZnS QDs after preliminary studies, paves the way for their use as outstanding multifunctional probes both for in vitro and in vivo applications in biomedicine.  相似文献   

2.
Lead sulfide (PbS) and cadmium sulfide (CdS) quantum dots (QDs) are prepared over mesoporous TiO2 films by a successive ionic layer adsorption and reaction (SILAR) process. These QDs are exploited as a sensitizer in solid‐state solar cells with 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) as a hole conductor. High‐resolution transmission electron microscopy (TEM) images reveal that PbS QDs of around 3 nm in size are distributed homogeneously over the TiO2 surface and are well separated from each other if prepared under common SILAR deposition conditions. The pore size of the TiO2 films and the deposition medium are found to be very critical in determining the overall performance of the solid‐state QD cells. By incorporating promising inorganic QDs (PbS) and an organic hole conductor spiro‐OMeTAD into the solid‐state cells, it is possible to attain an efficiency of over 1% for PbS‐sensitized solid‐state cells after some optimizations. The optimized deposition cycle of the SILAR process for PbS QDs has also been confirmed by transient spectroscopic studies on the hole generation of spiro‐OMeTAD. In addition, it is established that the PbS QD layer plays a role in mediating the interfacial recombination between the spiro‐OMeTAD+ cation and the TiO2 conduction band electron, and that the lifetime of these species can change by around 2 orders of magnitude by varying the number of SILAR cycles used. When a near infrared (NIR)‐absorbing zinc carboxyphthalocyanine dye (TT1) is added on top of the PbS‐sensitized electrode to obtain a panchromatic response, two signals from each component are observed, which results in an improved efficiency. In particular, when a CdS‐sensitized electrode is first prepared, and then co‐sensitized with a squarine dye (SQ1), the resulting color change is clearly an addition of each component and the overall efficiencies are also added in a more synergistic way than those in PbS/TT1‐modified cells because of favorable charge‐transfer energetics.  相似文献   

3.
CdS thin films are a promising electron transport layer in PbS colloidal quantum dot (CQD) photovoltaic devices. Some traditional deposition techniques, such as chemical bath deposition and RF (radio frequency) magnetron sputtering, have been employed to fabricate CdS films and CdS/PbS CQD heterojunction photovoltaic devices. However, their power conversion efficiencies (PCEs) are moderate compared with ZnO/PbS and TiO2/PbS heterojunction CQD solar cells. Here, efficiencies have been improved substantially by employing solution‐processed CdS thin films from a single‐source precursor. The CdS film is deposited by a straightforward spin‐coating and annealing process, which is a simple, low‐cost, and high‐material‐usage fabrication process compared to chemical bath deposition and RF magnetron sputtering. The best CdS/PbS CQD heterojunction solar cell is fabricated using an optimized deposition and air‐annealing process achieved over 8% PCE, demonstrating the great potential of CdS thin films fabricated by the single‐source precursor for PbS CQDs solar cells.  相似文献   

4.
Two‐photon fluorescence imaging allows in vivo study of biological structures and activities in deep tissues, in which bright fluorophores with high photostability and good biocompatibility are highly desirable. Herein, a small‐molecule fluorogen with aggregation‐induced emission (AIEgen) is complexed with fetal bovine serum (FBS) proteins to develop a protein‐sized AIEgen–protein hybrid nanocomposite (TPEPy‐FBS) with bright far‐red/near‐infrared (NIR) emission, excellent photostability, and low phototoxicity for deep and high‐resolution in vivo two‐photon brain vasculature imaging. Upon complexation with FBS, the fluorescence of TPEPy is greatly intensified and a sixfold enhancement is observed with 10% FBS in aqueous media. The yielded TPEPy‐FBS shows good physical stability in aqueous media and the phototoxicity of TPEPy is dramatically inhibited after complexation with FBS. Moreover, TPEPy‐FBS exhibits bright two‐photon fluorescence in far‐red/NIR region and good photostability upon femtosecond laser excitation, which facilitates high performance in vivo imaging. A large imaging depth of 656 µm is obtained in brain vasculature network imaging with a high signal‐to‐background ratio of 234, where a small blood capillary of 1.05 µm can be resolved at an imaging depth of 656 µm. Highlighted is a simple and versatile strategy to develop efficient two‐photon probes for in vivo biological imaging.  相似文献   

5.
Methods for noninvasive brain imaging are highly desirable to study brain structures in neuroscience. Two‐photon fluorescence microscopy (2PFM) with near‐infrared (NIR) light excitation is a relatively noninvasive approach commonly used to study brain with high spatial resolution and large imaging depth. However, most of the current studies require cranial window implantation or skull‐thinning methods due to attenuation of excitation light. 2PFM through intact mouse skull is challenging due to strong scattering induced by skull bone. Herein, NIR‐II light excitable single‐chain conjugated polymer dots (CPdots) with bright fluorescence in NIR‐I region (peak at ≈725 nm and quantum yield of 20.6 ± 1.0%) are developed for deep in vivo two‐photon fluorescence (2PF) imaging of intact mouse brain. The synthesized CPdots exhibit good biocompatibility, high photostability, and large two‐photon absorption cross section. The CPdots allow 2PF images acquired upon excitation at 800, 1040 and 1200 nm with the highest signal‐to‐background ratio of 208 demonstrated for 1200 nm excitation. Moreover, a 3D reconstruction of the brain blood vessel network is obtained with a large vertical depth of 400 µm through intact skull. This work demonstrates great potential of bright NIR fluorophores for in vivo deep tissue imaging.  相似文献   

6.
Controlling the position of metal sulfide architectures is prerequisite and facilitates their device applications in solar cells, light‐emitting diodes, and many other optoelectronic fields. Thanks to ambient‐connected gas network trapped upon superhydrophobic surfaces, H2S gas can be continuously transported and reacted with metal ions along solid/liquid/gas triphase contact interface. Therefore, precisely positioning metal sulfide microstructure arrays are generated accordingly. The growth mechanisms as well as influencing factors are investigated to tailor the morphology, structure, and chemical composition of these metal sulfide materials. This interface‐mediated strategy can be widely applied to many other metal sulfides, such as PbS, MnS, Ag2S, and CuS. In particular, heterostructured metal sulfide architectures, such as PbS/CdS concentric microflower arrays, can be generated by stepwise replacement of metal ions inside liquid, exhibiting the advanced applications of this interface‐mediated growth strategy.  相似文献   

7.
Compared with imaging in the visible (400–650 nm) and near‐infrared window I (NIR‐I, 650–900 nm) regions, imaging in near‐infrared window II (NIR‐II, 1000–1700 nm) is a highly promising in vivo imaging modality with improved resolution and deeper tissue penetration. Here, a small molecule NIR‐II dye,5,5′‐(1H,5H‐benzo[1,2‐c:4,5‐c′] bis[1,2,5]thiadiazole)‐4,8‐diyl)bis(N,N‐bis(4‐(3‐((tert‐butyldimethylsilyl)oxy)propyl)phenyl) thiophen‐2‐amine), is successfully encapsulated into phospholipid vesicles to prepare a probe CQS1000. The novel NIR‐II probe is studied for in vivo multifunctional biological imaging. The results of this study indicate that the NIR‐II vesicle CQS1000 can noninvasively and dynamically visualize and monitor many physiological and pathological conditions of circulatory systems, including lymphatic drainage and routing, angiogenesis of tumor, and vascular deformity such as arterial thrombus formation and ischemia with high spatial and temporal resolution. More importantly, by virtue of the favorable half‐life of blood circulation of CQS1000, NIR‐II imaging is capable of aiding precise resection of tumor such as osteosarcoma and accelerating the process of lymph node dissection to complete sentinel lymph node biopsy for better decision making during the tumor surgery. Overall, CQS1000 is a highly promising NIR‐II probe for multifunctional biomedical imaging in physiological and pathological conditions, surpassing traditional NIR‐I imaging modality and pathologic assessments for clinical diagnosis and treatment.  相似文献   

8.
The influence of oxygen on the electrical properties of PbS are well known. The goal of this study is to compare and reveal this phenomenon in CdS(O) single crystals, which we have studied in detail previously. The experiments are performed for CdS single crystals with a known oxygen concentration, deviation from stoichiometry, and definite set of intrinsic point defects. They allow us to confirm the results described for PbS and clarify their nature. It is shown that the phenomenon is based on the capture of free charge carriers— electrons—by acceptor-like isoelectronic OS centers with the subsequent formation of associates having a complex structure. Previous conclusions on the dissolution mechanism of oxygen in CdS with deviations from stoichiometry are confirmed. Variations in the electrical properties in oxygen-activated PbS(O), similarly to CdS(O), showed that isoelectronic oxygen centers OS are present in lead sulfide.  相似文献   

9.
A solution‐processed nanoarchitecture based on PbS quantum dots (QDs) and multi‐walled carbon nanotubes (MWCNTs) is synthesized by simply mixing the pre‐synthesized high‐quality PbS QDs and oleylamine (OLA) pre‐functionalized MWCNTs. Pre‐functionalization of MWCNTs with OLA is crucial for the attachment of PbS QDs and the coverage of QDs on the surface of MWCNTs can be tuned by varying the ratio of PbS QDs to MWCNTs. The apparent photoluminescence (steady‐state emission and fluorescence lifetime) “quenching” effect indicates efficient charge transfer from photo‐excited PbS QDs to MWCNTs. The as‐synthesized PbS‐QD/MWCNT nanoarchitecture is further incorporated into a hole‐conducting polymer poly(3‐hexylthiophene)‐(P3HT), forming the P3HT:PbS‐QD/MWCNT nanohybrid, in which the PbS QDs act as a light harvester for absorbing irradiation over a wide wavelength range of the solar spectrum up to near infrared (NIR, ≈1430 nm) range; whereas, the one‐dimensional MWCNTs and P3HT are used to collect and transport photoexcited electrons and holes to the cathode and anode, respectively. Even without performing the often required “ligand exchange” to remove the long‐chained OLA ligands, the built nanohybrid photovoltaic (PV) device exhibits a largely enhanced power conversion efficiency (PCE) of 3.03% as compared to 2.57% for the standard bulk hetero‐junction PV cell made with P3HT and [6,6]‐Phenyl‐C61‐Butyric Acid Methyl Ester (PCBM) mixtures. The improved performance of P3HT:PbS‐QD/MWCNT nanohybrid PV device is attributed to the significantly extended absorption up to NIR by PbS QDs as well as the effectively enhanced charge separation and transportation due to the integrated MWCNTs and P3HT. Our research results suggest that properly integrating QDs, MWCNTs, and polymers into nanohybrid structures is a promising approach for the development of highly efficient PV devices.  相似文献   

10.
Near infrared light, especially the second near‐infrared light (NIR II) biowindows with deep penetration and high sensitivity are widely used for optical diagnosis and phototherapy. Here, a novel kind of 2D SnTe@MnO2‐SP nanosheet (NS)‐based nanoplatform is developed for cancer theranostics with NIR II‐mediated precise optical imaging and effective photothermal ablation of mouse xenografted tumors. The 2D SnTe@MnO2‐SP NSs are fabricated via a facile method combining ball‐milling and liquid exfoliation for synthesis of SnTe NSs, and surface coating MnO2 shell and soybean phospholipid (SP). The ultrathin SnTe@MnO2‐SP NSs reveal notably high photothermal conversion efficiency (38.2% in NIR I and 43.9% in NIR II). The SnTe@MnO2‐SP NSs inherently feature tumor microenvironment (TME)‐responsive biodegradability, and the main metabolite TeO32? shows great antitumor effect, coupling synergetic chemotherapy for cancer. Moreover, the SnTe@MnO2‐SP NSs also exhibit great potential for fluorescence, photoacoustic (PA), and photothermal imaging agents in the NIR II biowindow with much higher resolution and sensitivity. This is the first report, as far as is known, with such an inorganic nanoagent setting fluorescence/PA/photothermal imaging and photothermal therapy in NIR II biowindow and TME‐responsive biodegradability rolled into one, which provide insight into the clinical potential for cancer theranostics.  相似文献   

11.
Colloidal lead sulfide (PbS) quantum dots (QDs), which possess quantum confinement effect and processing compatibility with perovskite, are regarded as an excellent material for optimizing perovskite solar cells (PSCs). However, the existing PSCs optimized by PbS QDs are still facing the challenges of poor performance of the charge transport layers, low utilization in the near-infrared (NIR) region, and unsuitable energy level alignment, which limit the improvement of power conversion efficiency (PCE). Herein, a synchronous optimization strategy is realized via simultaneously introducing PbS QDs into SnO2 electron transport layer and employing rare-earth-doped PbS QDs (Eu:PbS QDs) film with hydrophobic chain ligands as the NIR light-absorping layer and hole transport layer (HTL) of devices. PbS QDs effectively decrease the density of trap states by passivating defects. Eu:PbS QDs film with adjustable bandgap is employed as an absorption layer to broaden the NIR spectral absorption. The well-matched energy level between Eu:PbS QDs layer and perovskite layer implies efficient hole transfer at the interface. The successful synchronous optimization greatly elevates all photovoltaic parameters, reaching a maximum PCE of 23.27%. This PCE is the highest for PSCs utilizing PbS QDs material in recent years. The optimized PSCs retain long-term moisture and light stability.  相似文献   

12.
Near‐infrared (NIR)‐absorbing metal‐based nanomaterials have shown tremendous potential for cancer therapy, given their facile and controllable synthesis, efficient photothermal conversion, capability of spatiotemporal‐controlled drug delivery, and intrinsic imaging function. Tantalum (Ta) is among the most biocompatible metals and arouses negligible adverse biological responses in either oxidized or reduced forms, and thus Ta‐derived nanomaterials represent promising candidates for biomedical applications. However, Ta‐based nanomaterials by themselves have not been explored for NIR‐mediated photothermal ablation therapy. In this work, an innovative Ta‐based multifunctional nanoplatform composed of biocompatible tantalum sulfide (TaS2) nanosheets (NSs) is reported for simultaneous NIR hyperthermia, drug delivery, and computed tomography (CT) imaging. The TaS2 NSs exhibit multiple unique features including (i) efficient NIR light‐to‐heat conversion with a high photothermal conversion efficiency of 39%, (ii) high drug loading (177% by weight), (iii) controlled drug release triggered by NIR light and moderate acidic pH, (iv) high tumor accumulation via heat‐enhanced tumor vascular permeability, (v) complete tumor ablation and negligible side effects, and (vi) comparable CT imaging contrast efficiency to the widely clinically used agent iobitridol. It is expected that this multifunctional NS platform can serve as a promising candidate for imaging‐guided cancer therapy and selection of cancer patients with high tumor accumulation.  相似文献   

13.
Chemical deposition of nanocrystalline PbS, CdS, and ZnS at the air/solution interface in the absence and presence of a polydiacetylene (PDA) Langmuir film is investigated in situ using grazing incidence X‐ray diffraction. In all cases, it is found that PDA has a pronounced effect on the incipient semiconductor nanocrystals (NCs). In the presence of PDA, PbS NCs showed a <111> orientation in addition to the commonly obtained <100> growth direction of the PbS rock salt structure while CdS and ZnS NCs crystallized in the zinc blende polymorph with a predominant <100> orientation. ZnS NCs were obtained only in the presence of PDA at the air/solution interface.  相似文献   

14.
Here, a facile approach for the in situ fabrication of metal sulfide (MS)‐graphene (G) nanocomposite, CdS‐G and PbS‐G, on indium?tin oxide (ITO) glass is demonstrated using a simple and scalable direct‐laser‐writing method in ambient air. Through the CO2 laser irradiation of a metal‐complex‐containing polyethersulfone layer on ITO glass, both the crystallization of laser‐induced MS (LIMS) and the formation of laser‐induced graphene (LIG) are synchronously achieved in one step, giving rise to a laser‐induced MS‐G nanocomposite photoelectrode, denoted as LI‐MS‐G@ITO. In such a laser‐scribing process, polyethersulfone not only acts as the carbon source to grow LIG but also provides an in situ source of S2? to produce LIMS with the aids of carbothermic reduction of sulfur element in polyethersulfone. The obtained LI‐MS‐G@ITO inherits the porous network architecture of polyethersulfone‐derived LIG, in which the LIMS nanocrystals uniformly decorate the multilayered graphene sheets with good dispersion, presenting a fast and stable photocurrent response with high reproducibility, which, as a proof‐of‐concept, further facilitates the use of a LI‐CdS‐G@ITO photoanode as an efficient transducer for photoelectrochemical detection of Cu2+ with high sensitivity and selectivity. This work can offer a universal and versatile protocol for the in situ and synchronous fabrication of novel MS‐G nanocomposites for sensitive photoelectrochemical analysis.  相似文献   

15.
Nowadays, one of the most exciting applications of nanotechnology in biomedicine is the development of localized, noninvasive therapies for diverse diseases, such as cancer. Among them, nanoparticle‐based photothermal therapy (PTT), which destroys malignant cells by delivering heat upon optical excitation of nanoprobes injected into a living specimen, is emerging with great potential. Two main milestones that must be reached for PTT to become a viable clinical treatment are deep penetration of the triggering optical excitation and real‐time accurate temperature monitoring of the ongoing therapy, which constitutes a critical factor to minimize collateral damage. In this work, a yet unexplored capability of near‐infrared emitting semiconductor nanocrystals (quantum dots, QDs) is demonstrated. Temperature self‐monitored ­QD‐based PTT is presented for the first time using PbS/CdS/ZnS QDs emitting in the second biological window. These QDs are capable of acting, simultaneously, as photothermal agents (heaters) and high‐resolution fluorescent thermal sensors, making it possible to achieve full control over the intratumoral temperature increment during PTT. The differences observed between intratumoral and surface temperatures in this comprehensive investigation, through different irradiation conditions, highlight the need for real‐time control of the intratumoral temperature that allows for a dynamic adjustment of the treatment conditions in order to maximize the efficacy of the therapy.  相似文献   

16.
Laser Doppler imaging (LDI) has become a standard method for optical measurement of tissue perfusion, but is limited by low resolution and long measurement times. We have developed an analysis technique based on a laser speckle imaging method that generates rapid, high-resolution perfusion images. We have called it laser speckle perfusion imaging (LSPI). This paper investigates LSPI output and compares it to LDI using blood flow models designed to simulate human skin at various levels of pigmentation. Results show that LSPI parameters can be chosen such that the instrumentation exhibits a similar response to changes in red blood cell concentration (0.1%-5%, 200 microL/min) and velocity (0-800 microL/min, 1% concentration) and, given its higher resolution and quicker response time, could provide a significant advantage over LDI for some applications. Differences were observed in the LDI and LSPI response to tissue optical properties. LDI perfusion values increased with increasing tissue absorption, while LSPI perfusion values showed a slight decrease. This dependence is predictable, owing to the perfusion algorithms specific to each instrument, and, if properly compensated for, should not influence each instrument's ability to measure relative changes in tissue perfusion.  相似文献   

17.
Two dimensional (2D) self-supporting lead sulfide (PbS) arrays composed of ordered quadrangular nanopyramids were successfully fabricated through a convenient wet-chemical route at room temperature. The as-synthesized products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV–vis–NIR absorption and photoluminescence spectroscopy. The as-prepared highly ordered self-supporting superstructures are stable under ultrasonic conditions. A “template-mediated in situ growth” mechanism is proposed for the formation of 2D PbS superstructures. With the prolongation of reaction time, the morphology evolution of PbS is clearly observed, which could be changed from nanopyramid-aggregated arrays into nanocube-aggregated arrays at original position. The optical properties of PbS self-supporting superstructures are investigated in detail.  相似文献   

18.
Fluorescence bioimaging in the second near‐infrared spectral region (NIR‐II, 1000–1700 nm) can provide advantages of high spatial resolution and large penetration depth, due to low light scattering. However, NIR‐II fluorophores simultaneously possessing high brightness, good stability, and biocompatibility are very rare. Hydrophobic NIR‐II emissive PbS@CdS quantum dots (QDs) are surface‐functionalized, via a silica and amphiphilic polymer (Pluronic F‐127) dual‐layer coating method. The as‐synthesized PbS@CdS@SiO2@F‐127 nanoparticles (NPs) are aqueously dispersible and possess a quantum yield of ≈5.79%, which is much larger than those of most existing NIR‐II fluorophores. Thanks to the dual‐layer protection, PbS@CdS@SiO2@F‐127 NPs show excellent chemical stability in a wide range of pH values. The biocompatibility of PbS@CdS@SiO2@F‐127 NPs is studied, and the results show that the toxicity of the NPs in vivo could be minimal. PbS@CdS@SiO2@F‐127 NPs are then utilized for in vivo and real‐time NIR‐II fluorescence microscopic imaging of mouse brain. The architecture of blood vessels is visualized and the imaging depth reaches 950 µm. Furthermore, in vivo NIR‐II fluorescence imaging of gastrointestinal tract is achieved, by perfusing PbS@CdS@SiO2@F‐127 NPs into mice at a rather low dosage. This work illustrates the potential of ultrastable, biocompatible, and bright NIR‐II QDs in biomedical and clinical applications, which require deep tissue imaging.  相似文献   

19.
Tumor hypoxia and chemoresistance are long‐lasting challenges in clinical cancer treatments resulting in treatment failures and low patient survival rates. Application of phototherapies to treat deep tissue‐buried tumors has been hampered by the lack of near infrared photosensitizers, and consumption of tissue oxygen, worsening the tumor hypoxia problem. Herein, an unprecedented theranostic lanthanum hexaboride‐based nanodrug is engineered to act as bimodal computed tomographic/magnetic resonance imaging contrast agents, absorb long near infrared (NIR) light in the biological window IIb (1500–1700 nm), generate hydroxyl radicals without using oxygen, and destroy drug‐resistant NCI‐H23 lung tumors completely, leading to an amazingly long average half‐life of 180 days, far exceeding than those of doxorubicin‐treated (21 days) and untreated mice groups (13 days). This work pioneers the field of photodynamic therapy in conquering hypoxia and chemodrug resistance problems for NIR‐IIb oxygen‐independent cancer treatments.  相似文献   

20.
In this paper, we report a novel CdS and PbS quantum dots (QDs) co-sensitized TiO2 nanorod arrays photoelectrode for quantum dots sensitized solar cells (QDSSCs). TiO2 film consisting of free-standing single crystal nanorods with several microns high and 90–100 nm in diameter were deposited on a conducting glass (SnO2:FTO) substrate by hydrothermal method. Then CdS/PbS QDs were deposited in turn on TiO2 nanorods by facile SILAR technique. The FTO/TiO2/CdS/PbS, used as photoelectrode in QDSSCs, produced a light to electric power conversion efficiency (Eff) of 2.0% under AM 1.5 illumination (100% sun), which shows the best power conversion efficiency compared with single CdS or PbS sensitized QDSSCs. One dimension TiO2 nanorod provides continuous charge carrier transport pathways without dead ends. The stepwise structure of the band edges favored the electron injection and the hole-recovery for both CdS and PbS layers in photoelectrode, which may gave a high electric power conversion efficiency. The facile preparation and low cost nature of the proposed method and structure make it has a bright application prospects in photovoltaic areas in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号