首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The last decade has witnessed the remarkable research progress of lanthanide‐doped upconversion nanocrystals (UCNCs) at the forefront of promising applications. However, the future development and application of UCNCs are constrained greatly by their underlying shortcomings such as significant nonradiative processes, low quantum efficiency, and single emission colors. Here a hybrid plasmonic upconversion nanostructure consisting of a GNR@SiO2 coupled with NaGdF4:Yb3+,Nd3+@NaGdF4:Yb3+,Er3+@NaGdF4 core–shell–shell UCNCs is rationally designed and fabricated, which exhibits strongly enhanced UC fluorescence (up to 20 folds) and flexibly tunable UC colors. The experimental findings show that controlling the SiO2 spacer thickness enables readily manipulating the intensity ratio of the Er3+ red, green, and blue emissions, thereby allowing us to achieve the emission color tuning from pale yellow to green upon excitation at 808 nm. Electrodynamic simulations reveal that the tunable UC colors are due to the interplay of plasmon‐mediated simultaneous excitation and emission enhancements in the Er3+ green emission yet only excitation enhancement in the blue and red emissions. The results not only provide an upfront experimental design for constructing hybrid plasmonic UC nanostructures with high efficiency and color tunability, but also deepen the understanding of the interaction mechanism between the Er3+ emissions and plasmon resonances in such complex hybrid nanostructure.  相似文献   

2.
Ruddlesden–Popper perovskite, (PEA)2PbBr4 (PEA = C8H9NH3), is a steady and inexpensive material with a broad bandgap and a narrow‐band emission. These features make it a potential candidate for deep‐blue light‐emitting diodes (LEDs). However, due to the weak exciton binding energy, LEDs based on the perovskite thin films usually possess a very low external quantum efficiency (EQE) of <0.03%. Here, for the first time, the construction of high‐performance deep‐blue LEDs based on 2D (PEA)2PbBr4 nanoplates (NPs) is demonstrated. The as‐fabricated (PEA)2PbBr4 NPs film shows a deep‐blue emission at 410 nm with excellent stability under ambient conditions. Impressively, LEDs based on the (PEA)2PbBr4 NPs film deliver a bright deep‐blue emission with a maximum luminance of 147.6 cd m?2 and a high EQE up to 0.31%, which represents the most efficient and brightest perovskite LEDs operating at deep‐blue wavelengths. Furthermore, the LEDs retain over 80% of their efficiencies for over 1350 min under ≈60% relative humidity. The steady and bright deep‐blue LEDs can be used as an excitation light source to realize white light emission, which shows the potential for light communication. The work provides scope for developing perovskite into efficient and deep‐blue LEDs for low‐cost light source and light communication.  相似文献   

3.
This study demonstrates the formation of extremely smooth and uniform formamidinium lead bromide (CH(NH2)2PbBr3 = FAPbBr3) films using an optimum mixture of dimethyl sulfoxide and N,N‐dimethylformamide solvents. Surface morphology and phase purity of the FAPbBr3 films are thoroughly examined by field emission scanning electron microscopy and powder X‐ray diffraction, respectively. To unravel the photophysical properties of these films, systematic investigation based on time‐integrated and time‐dependent photoluminescence studies are carried out which, respectively, bring out relatively lower nonradiative recombination rates and long lasting photogenerated charge carriers in FAPbBr3 perovskite films. The devices based on FTO/TiO2/FAPbBr3/spiro‐OMeTAD/Au show highly reproducible open‐circuit voltage (Voc) of 1.42 V, a record for FAPbBr3‐based perovskite solar cells. Voc as a function of illumination intensity indicates that the contacts are very selective and higher Voc values are expected to be achieved when the quality of the FAPbBr3 film is further improved. Overall, the devices based on these films reveal appreciable power conversion efficiency of 7% under standard illumination conditions with negligible hysteresis. Finally, the amplified spontaneous emission (ASE) behavior explored in a cavity‐free configuration for FAPbBr3 perovskite films shows a sharp ASE threshold at a fluence of 190 μJ cm?2 with high quantum efficiency further confirming the high quality of the films.  相似文献   

4.
Photogating detectors based on 2D materials attract significant research interests. However, most of these photodetectors are only sensitive to the incident intensities and lack the ability to distinguish different wavelengths. Color imaging based on these detectors usually requires additional optical filter arrays to collect red, green, and blue (RGB) colors in different photodetectors to restore the true color of one pixel. In this study, an MoS2/HfO2/silicon‐on‐insulator field effect phototransistor with wavelength distinguishing ability is presented, where the photogating effect can be simultaneously formed in the top MoS2 gate and bottom Si substrate gate. These two individual photogating effects can reduce and increase the read current in the middle 12 nm Si channel, respectively. Thus, by tuning the applied voltages on these two gates, the device can be used to obtain tunable ambipolar photoresponsivity from +7000 A W?1 (Si bottom gate dominated) to 0 A W?1 (balanced), and finally to ?8000 A W?1 (MoS2 gate dominated). In addition, the experimental results show that the corresponding top gate voltage to the zero responsivity (0 A W?1) point can be positively shifted by the increasing of incident wavelength with high resolution up to 2 nm and is insensitive to the incident intensity.  相似文献   

5.
An HBr‐assisted slow cooling method is developed for the growth of centimeter‐sized Cs4PbBr6 crystals. The obtained crystals show strong green photoluminescence with absolute photoluminescence quantum yields up to 97%. More importantly, the evolution process and structural characterizations support that the nonstoichiometry of initial Cs4PbBr6 crystals induce the formation of nanosized CsPbBr3 nanocrystals in crystalline Cs4PbBr6 matrices. Furthermore, high efficiency and wide color gamut prototype white light‐emitting diode devices are also demonstrated by combining the highly luminescent Cs4PbBr6 crystals as green emitters and commercial K2SiF6:Mn4+ phosphor as red emitters with blue emitting GaN chips. The optimized devices generate high‐quality white light with luminous efficiency of ≈151 lm W−1 and color gamut of 90.6% Rec. 2020 at 20 mA, which is much better than that based on conventional perovskite nanocrystals. The combination of improved efficiency and better stability with comparable color quality provides an alternative choice for liquid crystal display backlights.  相似文献   

6.
Organic‐inorganic hybrid perovskite (CH3NH3PbX3, X = Cl, Br or I) quantum dots (QDs) have shown superior optoelectronic properties and have been regarded as a most ideal material for next‐generation optoelectronic devices, particularly for QDs‐based light‐emitting diodes (QLEDs). However, there are only a few reports on CH3NH3PbX3 QLEDs and the reported performance is still very poor, primarily due to the difficulties in the fabrication of high‐quality compact QDs thin films. In this work, an electric‐field‐assisted strategy is developed for efficient fabrication of uniform CH3NH3PbBr3 QDs thin films with high photoluminescence quantum yields (PLQY, 80%–90%) from dilute CH3NH3PbBr3 QDs suspensions (≈0.1 mg mL‐1) within 5 mins. Benefited from the high‐quality CH3NH3PbBr3 QDs thin films, the corresponding QLEDs deliver a highly bright green emission with maximum luminances of 12450 cd m2. Furthermore, a current efficiency of 12.7 cd A‐1, a power efficiency of 9.7 lm W‐1, and an external quantum efficiency (EQE) of 3.2% were acheived by enhancing the hole injection. This performance represents the best results for CH3NH3PbBr3 QDs‐based QLEDs reported to date. These results indicate an important progress in the fabrication of high‐performance CH3NH3PbX3 QLEDs and demonstrate their huge potential for next‐generation displays and lighting.  相似文献   

7.
Lead halide perovskite nanocrystals (PeNCs) are promising materials for applications in optoelectronics. However, their environmental instability remains to be addressed to enable their advancement into industry. Here the development of a novel synthesis method is reported for monodispersed PeNCs coated with all inorganic shell of cesium lead bromide (CsPbBr3) grown epitaxially on the surface of formamidinium lead bromide (FAPbBr3) NCs. The formed FAPbBr3/CsPbBr3 NCs have photoluminescence in the visible range 460–560 nm with narrow emission linewidth (20 nm) and high optical quantum yield, photoluminescence quantum yield (PLQY) up to 93%. The core/shell perovskites have enhanced optical stability under ambient conditions (70 d) and under ultraviolet radiation (50 h). The enhanced properties are attributed to overgrowth of FAPbBr3 with all‐inorganic CsPbBr3 shell, which acts as a protective layer and enables effective passivation of the surface defects. The use of these green‐emitting core/shell FAPbBr3/CsPbBr3 NCs is demonstrated in light‐emitting diodes (LEDs) and significant enhancement of their performance is achieved compared to core only FAPbBr3‐LEDs. The maximum current efficiency observed in core/shell NC LED is 19.75 cd A‐1 and the external quantum efficiency of 8.1%, which are approximately four times and approximately eight times higher, respectively, compared to core‐only devices.  相似文献   

8.
The K+‐induced formation of G‐quadruplexes provides a versatile motif to lock or unlock substrates trapped in the pores of mesoporous SiO2 nanoparticles, MP‐SiO2 NPs. In one system, the substrate is locked in the MP‐SiO2 NPs by K+‐ion‐stabilized G‐quadruplex units, and the pores are unlocked by the elimination of K+ ions using Kryptofix [2.2.2] (KP) or 18‐crown‐6‐ether (CE) from the G‐quadruplexes. In the second system, the substrate is locked in the pores by means of K+‐stabilized aptameric G‐quadruplex/thrombin units. Unlocking of the pores is triggered by the dissociation of the aptamer/thrombin complexes through the KP‐ or CE‐mediated elimination of the stabilizing K+ ions. In the third system, duplex DNA units lock the pores of MP‐SiO2 NPs, and the release of the entrapped substrate is stimulated by the K+‐ion‐induced dissociation of the duplex caps through the formation of the K+‐stabilized G‐quadruplexes. The latter system is further implemented to release the anti‐cancer drug, doxorubicin, in the presence of K+ ions, from the MP‐SiO2 NPs. Preliminary intracellular experiments reveal that doxorubicin‐loaded MP‐SiO2 NPs lead to effective death of breast cancer cells.  相似文献   

9.
Two blue‐emitting cationic iridium complexes with 2‐(1H‐pyrazol‐1‐yl)pyridine (pzpy) as the ancillary ligands, namely, [Ir(ppy)2(pzpy)]PF6 and [Ir(dfppy)2(pzpy)]PF6 (ppy is 2‐phenylpyridine, dfppy is 2‐(2,4‐difluorophenyl) pyridine, and PF6? is hexafluorophosphate), have been prepared, and their photophysical and electrochemical properties have been investigated. In CH3CN solutions, [Ir(ppy)2(pzpy)]PF6 emits blue‐green light (475 nm), which is blue‐shifted by more than 100 nm with respect to the typical cationic iridium complex [Ir(ppy)2(dtb‐bpy)]PF6 (dtb‐bpy is 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine); [Ir(dfppy)2(pzpy)]PF6 with fluorine‐substituted cyclometalated ligands shows further blue‐shifted light emission (451 nm). Quantum chemical calculations reveal that the emissions are mainly from the ligand‐centered 3ππ* states of the cyclometalated ligands (ppy or dfppy). Light‐emitting electrochemical cells (LECs) based on [Ir(ppy)2(pzpy)]PF6 gave green‐blue electroluminescence (486 nm) and had a relatively high efficiency of 4.3 cd A?1 when an ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate was added into the light‐emitting layer. LECs based on [Ir(dfppy)2(pzpy)]PF6 gave blue electroluminescence (460 nm) with CIE (Commission Internationale de L'Eclairage) coordinates of (0.20, 0.28), which is the bluest light emission for iTMCs‐based LECs reported so far. Our work suggests that using diimine ancillary ligands involving electron‐donating nitrogen atoms (like pzpy) is an efficient strategy to turn the light emission of cationic iridium complexes to the blue region.  相似文献   

10.
A highly stable new electrochromic polymer, poly(1,4‐bis(2‐(3′,4′‐ethylenedioxy)thienyl)‐2‐methoxy‐5‐2″‐ethylhexyloxybenzene) (P(BEDOT‐MEHB)) was synthesized and its electrochemical and electrochromic properties are reported. P(BEDOT‐MEHB) showed a very well defined electrochemistry with a relatively low oxidation potential of the monomer at + 0.44 V versus Ag/Ag+, E1/2 at – 0.35 V versus Ag/Ag+ and stability to long‐term switching up to 5000 cycles. A high level of stability to over‐oxidation has also been observed as this material shows limited degradation of its electroactivity at potentials 1.4 V above its half‐wave potential. Spectroelectrochemistry showed that the absorbance of the π–π* transition in the neutral state is blue‐shifted compared to PEDOT, displaying a maximum at 538 nm (onset at 640 nm), thus giving an almost colorless, highly transparent oxidized polymer with a bandgap of 1.95 eV. Different colors observed at different oxidation levels and strong absorption in the near‐IR make this polymer a good candidate for several applications.  相似文献   

11.
Luminescent solar concentrators (LSCs) are able to efficiently harvest solar energy through large‐area photovoltaic windows, where fluorophores are delicately embedded. Among various types of fluorophores, all‐inorganic perovskite nanocrystals (NCs) are emerging candidates as absorbers/emitters in LSCs due to their size/composition/dimensionality tunable optical properties and high photoluminescence quantum yield (PL QY). However, due to the large overlap between absorption and emission spectra, it is still challenging to fabricate high‐efficiency LSCs. Intriguingly, zero‐dimensional (0D) perovskites provide a number of features that meet the requirements for a potential LSC absorber, including i) small absorption/emission spectral overlap (Stokes shift up to 1.5 eV); ii) high PL QY (>95% for bulk crystal); iii) robust stability as a result of its large exciton binding energy; and iv) ease of synthesis. In this work, as a proof‐of‐concept experiment, Cs4PbBr6 perovskite NCs are used to fabricate semi‐transparent large‐area LSCs. Cs4PbBr6 perovskite film exhibits green emission with a high PL QY of ≈58% and a small absorption/emission spectral overlap. The optimized LSCs exhibit an external optical efficiency of as high as 2.4% and a power conversion efficiency of 1.8% (100 cm2). These results indicate that 0D perovskite NCs are excellent candidates for high‐efficiency LSCs compared to 3D perovskite NCs.  相似文献   

12.
Novel blue‐light‐emitting materials, 9,10‐bis(1,2‐diphenyl styryl)anthracene (BDSA) and 9,10‐bis(4′‐triphenylsilylphenyl)anthracene (BTSA), which are composed of an anthracene molecule as the main unit and a rigid and bulky 1,2‐diphenylstyryl or triphenylsilylphenyl side unit, have been designed and synthesized. Theoretical calculations on the three‐dimensional structures of BDSA and BTSA show that they have a non‐coplanar structure and inhibited intermolecular interactions, resulting in a high luminescence efficiency and good color purity. By incorporating these new, non‐doped, blue‐light‐emitting materials into a multilayer device structure, it is possible to achieve luminance efficiencies of 1.43 lm W–1 (3.0 cd A–1 at 6.6 V) for BDSA and 0.61 lm W–1 (1.3 cd A–1 at 6.7 V) for BTSA at 10 mA cm–2. The electroluminescence spectrum of the indium tin oxide (ITO)/copper phthalocyanine (CuPc)/1,4‐bis[(1‐naphthylphenyl)‐amino]biphenyl (α‐NPD)/BDSA/tris(9‐hydroxyquinolinato)aluminum (Alq3)/LiF/Al device shows a narrow emission band with a full width at half maximum (FWHM) of 55 nm and a λmax = 453 nm. The FWHM of the ITO/CuPc/α‐NPD/BTSA/Alq3/LiF/Al device is 53 nm, with a λmax = 436 nm. Regarding color, the devices showed highly pure blue emission ((x,y) = (0.15,0.09) for BTSA, (x,y) = (0.14,0.10) for BDSA) at 10 mA cm–2 in Commission Internationale de l'Eclairage (CIE) chromaticity coordinates.  相似文献   

13.
Endocrine disruptors such as bisphenol A (BPA) are environmental pollutants that interfere with the body's endocrine system because of their structural similarity to natural and synthetic hormones. Due to their strong oxidizing potential to decompose such organic pollutants, colloidal metal oxide photocatalysts have attracted increasing attention for water detoxification. However, achieving both long‐term physical stability and high efficiency simultaneously with such photocatalytic systems poses many challenges. Here a layer‐by‐layer (LbL) deposition approach is reported for immobilizing TiO2 nanoparticles (NPs) on a porous support while maintaining a high catalytic efficiency for photochemical decomposition of BPA. Anatase TiO2 NPs ≈7 nm in diameter self‐assemble in consecutive layers with positively charged polyhedral oligomeric silsesquioxanes on a high surface area, porous electrospun polymer fiber mesh. The TiO2 LbL nanofibers decompose approximately 2.2 mg BPA per mg of TiO2 in 40 h of illumination (AM 1.5G illumination), maintaining first‐order kinetics with a rate constant (k) of 0.15 h?1 for over 40 h. Although the colloidal TiO2 NPs initially show significantly higher photocatalytic activity (k ≈ 0.84 h?1), the rate constant drops to k ≈ 0.07 h?1 after 4 h of operation, seemingly due to particle agglomeration. In the BPA solution treated with the multilayered TiO2 nanofibers for 40 h, the estrogenic activity, based on human breast cancer cell proliferation, is significantly lower than that in the BPA solution treated with colloidal TiO2 NPs under the same conditions. This study demonstrates that water‐based, electrostatic LbL deposition effectively immobilizes and stabilizes TiO2 NPs on electrospun polymer nanofibers for efficient extended photochemical water remediation.  相似文献   

14.
Recently developed CsPbX3 (X = Cl, Br, and I) perovskite quantum dots (QDs) hold great potential for various applications owing to their superior optical properties, such as tunable emissions, high quantum efficiency, and narrow linewidths. However, poor stability under ambient conditions and spontaneous ion exchange among QDs hinder their application, for example, as phosphors in white‐light‐emitting diodes (WLEDs). Here, a facile two‐step synthesis procedure is reported for luminescent and color‐tunable CsPbX3–zeolite‐Y composite phosphors, where perovskite QDs are encapsulated in the porous zeolite matrix. First zeolite‐Y is infused with Cs+ ions by ion exchange from an aqueous solution and then forms CsPbX3 QDs by diffusion and reaction with an organic solution of PbX2. The zeolite encapsulation reduces degradation and improves the stability of the QDs under strong illumination. A WLED is fabricated using the resulting microscale composites, with Commission Internationale de I'Eclairage (CIE) color coordinates (0.38, 0.37) and achieving 114% of National Television Standards Committee (NTSC) and 85% of the ITU‐R Recommendation BT.2020 (Rec.2020) coverage.  相似文献   

15.
Owing to efficient singlet oxygen (1O2) generation in aggregate state, photosensitizers (PSs) with aggregation‐induced emission (AIE) have attracted much research interests in photodynamic therapy (PDT). In addition to high 1O2 generation efficiency, strong molar absorption in long‐wavelength range and near‐infrared (NIR) emission are also highly desirable, but difficult to achieve for AIE PSs since the twisted structures in AIE moieties usually lead to absorption and emission in short‐wavelength range. In this contribution, through acceptor engineering, a new AIE PS of TBT is designed to show aggregation‐induced NIR emission centered at 810 nm, broad absorption in the range between 300 and 700 nm with a large molar absorption coefficient and a high 1O2 generation efficiency under white light irradiation. Further, donor engineering by attaching two branched flexible chains to TBT yielded TBTC8 , which circumvented the strong intermolecular interactions of TBT in nanoparticles (NPs), yielding TBTC8 NPs with optimized overall performance in 1O2 generation, absorption, and emission. Subsequent PDT results in both in vitro and in vivo studies indicate that TBTC8 NPs are promising candidates in practical application.  相似文献   

16.
A new and synthetically versatile strategy has been developed for the phosphorescence color tuning of cyclometalated iridium phosphors by simple tailoring of the phenyl ring of ppy (Hppy = 2‐phenylpyridine) with various main‐group moieties in [Ir(ppy‐X)2(acac)] (X = B(Mes)2, SiPh3, GePh3, NPh2, POPh2, OPh, SPh, SO2Ph). This can be achieved by shifting the charge‐transfer character from the pyridyl groups in some traditional iridium ppy‐type complexes to the electron‐withdrawing main‐group moieties and these assignments were supported by theoretical calculations. This new color tuning strategy in IrIII‐based triplet emitters using electron‐withdrawing main‐group moieties provides access to IrIII phosphors with improved electron injection/electron transporting features essential for highly efficient, color‐switchable organic light‐emitting diodes (OLEDs). The present work furnished OLED colors spanning from bluish‐green to red (505–609 nm) with high electroluminescence efficiencies which have great potential for application in multicolor displays. The maximum external quantum efficiency of 9.4%, luminance efficiency of 10.3 cd A−1 and power efficiency of 5.0 lm W−1 for the red OLED (X = B(Mes)2), 11.1%, 35.0 cd A−1, and 26.8 lm W−1 for the bluish‐green device (X = OPh), 10.3%, 36.9 cd A−1, and 28.6 lm W−1 for the bright green device (X = NPh2) as well as 10.7%, 35.1 cd A−1, and 23.1 lm W−1 for the yellow‐emitting device (X = SO2Ph) can be obtained.  相似文献   

17.
We demonstrated a unique approach that combines a layer‐by‐layer (LbL) self‐assembly method with dendrimer chemistry to functionalize Fe3O4 nanoparticles (NPs) for specific targeting and imaging of cancer cells. In this approach, positively charged Fe3O4 NPs (8.4 nm in diameter) synthesized by controlled co‐precipitation of FeII and FeIII ions were modified with a bilayer composed of polystyrene sulfonate sodium salt and folic acid (FA)‐ and fluorescein isothiocyanate (FI)‐functionalized poly(amidoamine) dendrimers of generation 5 (G5.NH2‐FI‐FA) through electrostatic LbL assembly, followed by an acetylation reaction to neutralize the remaining surface amine groups of G5 dendrimers. Combined flow cytometry, confocal microscopy, transmission electron microscopy, and magnetic resonance imaging studies show that Fe3O4/PSS/G5.NHAc‐FI‐FA NPs can specifically target cancer cells overexpressing FA receptors. The present approach to functionalizing Fe3O4 NPs opens a new avenue to fabricating various NPs for numerous biological sensing and therapeutic applications.  相似文献   

18.
The crystal structure of a ternary Er(DBM)3phen complex (DBM = dibenzoylmethane; phen = 1,10‐phenanthroline) and its in‐situ synthesis via a sol–gel process are reported. The infrared (IR), diffuse reflectance (DR), and fluorescence spectra of the pure complex and the Er3+/DBM/phen co‐doped luminescent hybrid gel, formed via an in‐situ method (ErDP gel), have been investigated. The results reveal that the erbium complex is successfully synthesized in situ in the ErDP gel. Excitation at the maximum absorption wavelength of the ligands resulted in the typical near‐IR luminescence (centered at around 1.54 μm) resulting from the 4I13/24I15/2 transition of the Er3+ ion, which contributes to the efficient energy transfer from the ligands to the Er3+ ion in both the Er(DBM)3phen complex and the ErDP gel (an antenna effect). The full width at half maximum (FWHM) centered at 1541 nm in the emission spectrum of the ErDP gel is 72 nm, which has potential for optical‐amplification applications. Further theoretical analysis on the Er3+ ion in the ErDP gel shows that it appears to be a promising candidate for tunable lasers and planar optical amplifiers.  相似文献   

19.
A robust and stable narrow‐band green emitter is recognized as a key enabler for wide‐color‐gamut liquid crystal display (LCD) backlights. Herein, an emerging rare earth silicate phosphor, RbNa(Li3SiO4)2:Eu2+ (RN:Eu2+) with exceptional optical properties and excellent thermal stability, is reported. The resulting RN:Eu2+ phosphor presents a narrow green emission band centered at 523 nm with a full width at half maximum of 41 nm and excellent thermal stability (102%@425 K of the integrated emission intensity at 300 K). RN:Eu2+ also shows a high quantum efficiency, an improved chemical stability, and a reduced Stokes shift owing to the modified local environment, in which [NaO8] cubes replace [LiO4] squares in RbLi(Li3SiO4)2:Eu2+ via polyhedron transformation. White light‐emitting diode (wLED) devices with a wide color gamut (113% National Television System Committee (NTSC)) and high luminous efficacy (111.08 lm W?1) are obtained by combining RN:Eu2+ as the green emitter, K2SiF6:Mn4+ as the red emitter, and blue‐emitting InGaN chips. Using these wLEDs as backlights, a prototype 20.5 in. LCD screen is fabricated, demonstrating the bright future of stable RN:Eu2+ for wide‐color‐gamut LCD backlight application.  相似文献   

20.
Ultramicroporous carbon materials with uniform pore size accurately adjusted to the dimension of electrolyte ions or CO2 molecule are highly desirable for maximizing specific capacitance and CO2 uptake. However, efficient ways to fine‐tuning ultramicropore size at angstrom level are scarce. A completely new approach to precisely tuning carbon ultramicropore size at sub‐angstrom level is proposed herein. Due to the varying activating strength and size of the alkali ions, the ultramicropore size can be finely tuned in the range of 0.60–0.76 nm as the activation ion varies from Li+ to Cs+. The carbons prepared by direct pyrolysis of alkali salts of carboxylic phenolic resins yield ultrahigh capacitances of up to 223 F g‐1 (205 F cm‐3) in ionic liquid electrolyte, and superior CO2 uptake of 5.20 mmol g‐1 at 1.0 bar and 25 °C. Such outstanding performance of the finely tuned carbons lies in its adjustable pore size perfectly adapted to the electrolyte ions and CO2 molecule. This work paves the way for a new route to finely tuning ultramicropore size at the sub‐angstrom level in carbon materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号