首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Because the intrinsic Ge vacancies in GeTe usually lead to high hole concentration beyond the optimal range, many previous studies tend to consider Ge vacancies as negative effects on increasing the figure of merit ZT of GeTe‐based alloys, and consequently have proposed various approaches to suppress Ge vacancies. However, in this work, it is demonstrated that the Ge vacancies can have great positive effects on enhancing the ZT of GeTe‐based alloys when the hole concentration falls into the optimal range. First, hole concentration of GeTe is reduced close to the optimal range by co‐alloying of Pb and Bi, and then the Ge vacancies are increased by adding excess Te into the Ge0.8Pb0.1Bi0.1Te1+x. The Ge vacancies can cause lattice shrinkage and promote rhombohedral‐to‐cubic phase transition. As revealed by first‐principle calculations, theoretical simulations, and experimental tests, Ge vacancies can facilitate the band convergence, suppress the bipolar transport at higher temperature range, and reduce the lattice thermal conductivity. Combining these effects, a peak ZT of 1.92 at 637 K and an average ZT of 1.34 within 300–773 K in Ge0.8Pb0.1Bi0.1Te1.06 can be obtained, demonstrating the great significance of utilizing vacancy‐type defects for enhancing ZT.  相似文献   

2.
Ag-Sb-Te-Ge-based alloys have received great attention in recent years. In the present work we prepared the pseudobinary alloy (Ag0.365Sb0.558Te)0.975 (GeTe)0.025 using spark plasma sintering and evaluated its thermoelectric (TE) properties over the temperature range from 318 K to 551 K. Rietveld analysis revealed that about 1.3 at.% Ge atoms occupy the Sb sites and that the alloy exhibits the same crystal structure as AgSbTe2. By using back-scattered electron imaging, we observed two instead of one phase in the sample. The small white AgSbTe2 chunks embedded in the matrix can substantially scatter phonons. Compared with the transport properties of Ag0.365Sb0.558Te, we obtained a slightly increased Seebeck coefficient and reduced thermal conductivity without sacrificing electrical conductivity. The highest TE figure of merit, ZT, was 0.69 at 551 K, whereas that of the ternary alloy Ag0.365Sb0.558Te was 0.61 at the corresponding temperature, suggesting that (Ag0.365Sb0.558Te)0.975(GeTe)0.025 has the potential to improve TE performance with optimization of its chemical composition.  相似文献   

3.
The beneficial effect of impurity scattering on thermoelectric properties has long been disregarded even though possible improvements in power factor have been suggested by Ioffe more than a half century ago. Here it is theoretically and experimentally demonstrated that proper intensification of ionized impurity scattering to charge carriers can benefit the thermoelectric figure of merit (ZT) by increasing the Seebeck coefficient and decreasing the electronic thermal conductivity. The optimal strength of ionized impurity scattering for maximum ZT depends on the Fermi level and the density of states effective mass. Cr‐doping in CeyCo4Sb12 progressively increases the strength of ionized impurity scattering, and significantly improves the Seebeck coefficient, resulting in high power factors of 45 μW cm?1 K?2 with relatively low electrical conductivity. This effect, combined with the increased Ce‐filling fraction and thus decreased lattice thermal conductivity by charge compensation of Cr‐dopant, gives rise to a maximum ZT of 1.3 at 800 K and a large average ZT of 1.1 between 500 and 850 K, ≈30% and ≈20% enhancements as compared with those of Cr‐free sample, respectively. Furthermore, this study also reveals that carrier scattering parameter can be another fundamental degree of freedom to optimize electrical properties and improve thermal‐to‐electricity conversion efficiencies of thermoelectric materials.  相似文献   

4.
Bulk thermoelectric nanocomposite materials have great potential to exhibit higher ZT due to effects arising from their nanostructure. Herein, we report low-temperature thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites containing FeSb2 nanoinclusions. These nanocomposites can be easily synthesized by melting and rapid water quenching. The nanoscale FeSb2 precipitates are well dispersed in the skutterudite matrix and reduce the lattice thermal conductivity due to additional phonon scattering from nanoscopic interfaces. Moreover, the nanocomposite samples also exhibit enhanced Seebeck coefficients relative to regular iron-substituted skutterudite samples. As a result, our best nanocomposite sample boasts a ZT = 0.041 at 300 K, which is nearly three times as large as that for Co0.9Fe0.1Sb3 previously reported.  相似文献   

5.
The exploration of n-type PbTe as thermoelectric materials always falls behind its p-type counterpart, mainly due to their quite different electronic band structure. In this work, elemental Sb and Cu2Te are introduced into an n-type base material (PbTe)81-Sb2Te3. The introduction of extra Sb can effectively tune the concentration of electrons; meanwhile, Sb precipitates can also scatter low-energy electrons (negatively contribute to the Seebeck coefficient) thus enhance the overall Seebeck coefficient. The added Cu2Te is found to always co-precipitate with Sb, forming an interesting Sb/CuTe core/shell structure; moreover, the interface between core/shell precipitates and PbTe matrix simultaneously shows coherent lattice and strong strain contrast, beneficial for electron transport but adverse to phonon transport. Eventually, a peak figure of merit ZTmax  ≈  1.6 @ 823K and simultaneously an average ZT  ≈  1.0 (323–823 K) are realized in the (PbTe)81Sb2Te3-0.6Sb-2Cu2Te sample, representing the state of the art for n-type PbTe-based thermoelectric materials. Moreover, for the first time the three existing forms of Cu atoms in Cu2Te alloyed PbTe are unambiguously clarified with aberration-corrected scanning transmission electron microscopy (Cs-STEM).  相似文献   

6.
GeTe is an interesting material presenting both spontaneous polarization (ferroelectrics) and outstanding electrical conductivity (ideal for thermoelectrics). Pristine GeTe exhibits classic 71° and 109° submicron ferroelectric domains, and near unity thermoelectric figure of merit ZT at 773 K. In this work, it is demonstrated that Bi2Te3 alloying in GeTe lattice can introduce vast Ge vacancies which can further evolve into nanoscale van der Waals gaps upon proper heat treatment, and that these vacancy gaps can induce 180° nanoscale ferroelectric domain boundaries. These microstructures eventually become a hierarchical ferroelectric domain structure, with size varying from submicron to nanoscale and polarization from 71°, 109° to 180°. The establishment of hierarchical ferroelectric domain structure, together with the nanoscale Ge vacancy van der Waals gaps, has profound effects on the electrical and thermal transport properties, resulting in a striking peak thermoelectric ZT ≈ 2.4 at 773 K. These findings might provide an alternative conception for thermoelectric optimization via microstructure modulation.  相似文献   

7.
A high thermoelectric figure of merit ZT, with a maximum value ZT = 1.5 at 670?C800 K for the composition Ge0.9Pb0.05Bi0.05Te, has been obtained for GeTe solid solutions with Bi and Pb impurities. This is conducive to a decrease in the hole concentration, an increase in the Seebeck coefficient, and a decrease in the lattice thermal conductivity. The main attention in interpretation of the experimental data is given to specific features of the energy spectrum of holes in the initial GeTe compound. The model of resonance states, formed with involvement of Ge atoms and metal vacancies, has been further developed. The types of defects and their transformation depending on temperature and the concentration of superstoichiometric Te have been considered. The experimental results give reason to believe that the interaction of localized and free charge carriers at elevated temperatures leads to a pronounced hybridization of their states and the formation of heavy quasiparticles, a situation in many ways similar to that observed in materials with heavy fermions.  相似文献   

8.
A mechanical alloying (MA) process to transform elemental powders into solid Pb0.5Sn0.5Te with thermoelectric functionality comparable to melt-alloyed material is described. The room-temperature doping level and mobility as well as temperature-dependent electrical conductivity, Seebeck coefficient, and thermal conductivity are reported. Estimated values of lattice thermal conductivity (0.7 W m−1 K−1) are lower than some reports of functional melt-alloyed PbSnTe-based material, providing evidence that MA can engender the combination of properties resulting in highly functional thermoelectric material. Though doping level and Sn composition have not been optimized, this material exhibits a ZT value >0.5 at 550 K.  相似文献   

9.
Enhancement of thermopower is achieved by doping the narrow‐band semiconductor Ag6.52Sb6.52Ge36.96Te50 (acronym TAGS‐85), one of the best p‐type thermoelectric materials, with 1 or 2% of the rare earth dysprosium (Dy). Evidence for the incorporation of Dy into the lattice is provided by X‐ray diffraction and increased orientation‐dependent local fields detected by 125Te NMR spectroscopy. Since Dy has a stable electronic configuration, the enhancement cannot be attributed to 4f‐electron states formed near the Fermi level. It is likely that the enhancement is due to a small reduction in the carrier concentration, detected by 125Te NMR spectroscopy, but mostly due to energy filtering of the carriers by potential barriers formed in the lattice by Dy, which has large both atomic size and localized magnetic moment. The interplay between the thermopower, the electrical resistivity, and the thermal conductivity of TAGS‐85 doped with Dy results in an enhancement of the power factor (PF) and the thermoelectric figure of merit (ZT) at 730 K, from PF = 28 μW cm?1 K?2 and ZT ≤ 1.3 in TAGS‐85 to PF = 35 μW cm?1 K?2 and ZT ≥ 1.5 in TAGS‐85 doped with 1 or 2% Dy for Ge. This makes TAGS‐85 doped with Dy a promising material for thermoelectric power generation.  相似文献   

10.
Compatible p- and n-type materials are necessary for high-performance GeTe thermoelectric modules, where the n-type counterparts are in urgent need. Here, it is reported that the p-type GeTe can be tuned into n-type by decreasing the formation energy of Te vacancies via AgBiTe2 alloying. AgBiTe2 alloying induces Ag2Te precipitates and tunes the carrier concentration close to the optimal level, leading to a high-power factor of 6.2 µW cm−1 K−2 at 423 K. Particularly, the observed hierarchical architectural structures, including phase boundaries, nano-precipitates, and point defects, contribute an ultralow lattice thermal conductivity of 0.39 W m−1 K−1 at 423 K. Correspondingly, an increased ZT of 0.5 at 423 K is observed in n-type (GeTe)0.45(AgBiTe2)0.55. Furthermore, a single-leg module demonstrates a maximum η of 6.6% at the temperature range from 300 to 500 K. This study indicates that AgBiTe2 alloying can successfully turn GeTe into n-type with simultaneously optimized thermoelectric performance.  相似文献   

11.
Se‐doped Mg3.2Sb1.5Bi0.5‐based thermoelectric materials are revisited in this study. An increased ZT value ≈ 1.4 at about 723 K is obtained in Mg3.2Sb1.5Bi0.49Se0.01 with optimized carrier concentration ≈ 1.9 × 1019 cm?3. Based on this composition, Co and Mn are incorporated for the manipulation of the carrier scattering mechanism, which are beneficial to the dramatically enhanced electrical conductivity and power factor around room temperature range. Combined with the lowered lattice thermal conductivity due to the introduction of effective phonon scattering centers in Se&Mn‐codoped sample, a highest room temperature ZT value ≈ 0.63 and a peak ZT value ≈ 1.70 at 623 K are achieved for Mg3.15Mn0.05Sb1.5Bi0.49Se0.01, leading to a high average ZT ≈ 1.33 from 323 to 673 K. In particular, a remarkable average ZT ≈ 1.18 between the temperature of 323 and 523 K is achieved, suggesting the competitive substitution for the commercialized n‐type Bi2Te3‐based thermoelectric materials.  相似文献   

12.
Ce-doped Pb1−x Ce x Te alloys with x = 0, 0.005, 0.01, 0.015, 0.03, and 0.05 were prepared by induction melting, ball milling, and spark plasma sintering techniques. The structure and thermoelectric properties of the samples were investigated. X-ray diffraction (XRD) analysis indicated that the samples were of single phase with NaCl-type structure for x less than 0.03. The lattice parameter a increases with increasing Ce content. The lower Ce-doped samples (x = 0.005 and 0.01) showed p-type conduction, whereas the pure PbTe and the higher doped samples (x = 0, 0.015, 0.03, and 0.05) showed n-type conduction. The lower Ce-doped samples exhibited a much higher absolute Seebeck coefficient, but the higher electrical resistivity and higher thermal conductivity compared with pure PbTe resulted in a lower figure of merit ZT. In contrast, the higher Ce-doped samples exhibited a lower electrical resistivity, together with a lower absolute Seebeck coefficient and comparable thermal conductivity, leading to ZT comparable to that of PbTe. The lowest thermal conductivity (range from 0.99 W m−1 K−1 at 300 K to 0.696 W m−1 K−1 at 473 K) was found in the alloy Pb0.95Ce0.05Te due to the presence of the secondary phases, leading to a ZT higher than that of pure PbTe above 500 K. The maximum figure of merit ZT, in the alloy Pb0.95Ce0.05Te, was 0.88 at 673 K.  相似文献   

13.
Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state‐of‐the‐art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles into the BiSbTe matrix effectively enhances its thermoelectric properties; a high dimensionless figure of merit (ZT) value of up to 1.33 at 373 K is obtained in Bi0.3Sb1.7Te3 incorporated with only 0.4 vol% SiC nanoparticles. SiC nanoinclusions possessing coherent interfaces with the Bi0.3Sb1.7Te3 matrix can increase the Seebeck coefficient while increasing the electrical conductivity, in addition to its effect of reducing lattice thermal conductivity by enhancing phonon scattering. Nano‐SiC dispersion further endows the BiSbTe alloys with better mechanical properties, which are favorable for practical applications and device fabrication.  相似文献   

14.
Cu0.003Bi0.4Sb1.6Te3 alloys were prepared by using encapsulated melting and hot extrusion (HE). The hot-extruded specimens had the relative average density of 98%. The (00l) planes were preferentially oriented parallel to the extrusion direction, but the specimens showed low crystallographic anisotropy with low orientation factors. The specimens were hot-extruded at 698 K, and they showed excellent mechanical properties with a Vickers hardness of 76 Hv and a bending strength of 59 MPa. However, as the HE temperature increased, the mechanical properties degraded due to grain growth. The hot-extruded specimens showed positive Seebeck coefficients, indicating that the specimens have p-type conduction. These specimens exhibited negative temperature dependences of electrical conductivity, and thus behaved as degenerate semiconductors. The Seebeck coefficient reached the maximum value at 373 K and then decreased with increasing temperature due to intrinsic conduction. Cu-doped specimens exhibited high power factors due to relatively higher electrical conductivities and Seebeck coefficients than those of undoped specimens. A thermal conductivity of 1.00 Wm?1 K?1 was obtained at 373 K for Cu0.003Bi0.4Sb1.6Te3 hot-extruded at 723 K. A maximum dimensionless figure of merit, ZT max = 1.05, and an average dimensionless figure of merit, ZT ave = 0.98, were achieved at 373 K.  相似文献   

15.
Melt-spun ribbons composed of Zn x Sb3 (3.4????x????4.3) were fabricated through a single-wheel melt-spinning process at wheel velocities of 0.6?m?s?1 to 4.2?m?s?1 and annealed for 2?h at 673?K. The structures were investigated using x-ray diffraction. The dimensionless figure of merit ZT, Seebeck coefficient, and electrical conductivity were measured to estimate the power factor and thermal conductivity. ??-Zn4Sb3 in the as-spun ribbons coexisted with ZnSb or Zn at 0.6?m?s?1, while it coexisted with ??-Zn3Sb2 in x????3.8 at 4.2?m?s?1, where ??-Zn3Sb2 disappeared in the annealed ribbons. The Seebeck coefficient in the as-spun and annealed ribbons tended to decrease slightly with increasing x at all the wheel velocities. At 0.6?m?s?1, the ZT and power factor of as-spun and annealed ribbons increased with increasing x at x?<?4.0 because of increase in the electrical conductivity. At 4.2?m?s?1, ZT was smaller than that at 0.6?m?s?1 because the electrical conductivity was small in the as-spun ribbons and the thermal conductivity was large in the annealed ribbons.  相似文献   

16.
Balancing the contradictory relationship between thermoelectric parameters, such as effective mass and carrier mobility, is a challenge to optimize thermoelectric performance. Herein, the exceptional thermoelectric performance is realized in GeTe through collaboratively optimizing the carrier and phonon transport via stepwise alloying Pb and CuSbSe2. The formation energy of Ge vacancy is efficiently bolstered by alloying Pb, which reduces carrier density and carrier scattering to maintain superior carrier mobility in GeTe. Additionally, CuSbSe2, acting as an n-type dopant, further modulates carrier density and validly equilibrates carrier mobility and effective mass. Accordingly, the promising power factor of 45 µW cm−1 K−2 is achieved at 723 K. Meanwhile, point defects are found to significantly suppress phonons transport to descend lattice thermal conductivity by Pb and CuSbSe2 alloying, which barely impacts the carrier mobility. A combination with superior carrier mobility and lower lattice thermal conductivity, a maximum ZT of 2.2 is attained in Ge0.925Pb0.075Cu0.005Sb0.005TeSe0.01, which corresponds to a 100% promotion compared with that of intrinsic GeTe. This study provides a new indicator for optimizing carrier and phonon transport properties by balancing interrelated thermoelectric parameters.  相似文献   

17.
The thermoelectric properties of the Zintl compound YbZn2Sb2 with isoelectronic substitution of Zn by Mn in the anionic (Zn2Sb2)2− framework have been studied. The p-type YbZn2−x Mn x Sb2 (0.0 ≤ x ≤ 0.4) samples were prepared via melting followed by annealing and hot-pressing. Thermoelectric property measurement showed that the Mn substitution effectively lowered the thermal conductivity for all the samples, while it significantly increased the Seebeck coefficient for x < 0.2. As a result, a dimensionless figure of merit ZT of approximately 0.61 to 0.65 was attained at 726 K for x = 0.05 to 0.15, compared with the ZT of ~0.48 in the unsubstituted YbZn2Sb2.  相似文献   

18.
A deficiency of Ga in wide band‐gap AgGa1‐xTe2 semiconductors (1.2 eV) can be used to optimize the electrical transport properties and reduce the thermal conductivity to achieve ZT > 1 at 873 K. First‐principles density functional theory calculations and a Boson peak observed in the low temperature heat capacity data indicate the presence of strong coupling between optical phonons with low frequency and heat carrying acoustical phonons, resulting in a depressed maximum of Debye frequency in the first Brillouin zone and low phonon velocities. Moreover, the Ag? Te bond lengths and Te? Ag? Te bond angles increase with rising temperature, leading to a significant distortion of the [AgTe4]7? tetrahedra, but an almost unmodified [GaTe4]5? tetrahedra. This behavior results in lattice expansion in the ab‐plane and contraction along the c‐axis, corresponding to the positive and negative Gruneisen parameters in the phonon spectral calculations. This effect gives rise to the large anharmonic behavior of the lattice. These factors together with the low frequency vibrations of Ag and Te atoms in the structure lead to an ultralow thermal conductivity of 0.18 W m?1 K?1 at 873 K.  相似文献   

19.
Thermoelectric materials based on quaternary compounds Ag1?xPbmSbTe2+m exhibit high dimensionless figure‐of‐merit values, ranging from 1.5 to 1.7 at 700 K. The primary factor contributing to the high figure of merit is a low lattice thermal conductivity, achieved through nanostructuring during melt solidification. As a consequence of nucleation and growth of a second phase, coherent nanoscale inclusions form throughout the material, which are believed to result in scattering of acoustic phonons while causing only minimal scattering of charge carriers. Here, characterization of the nanosized inclusions in Ag0.53Pb18Sb1.2Te20 that shows a strong tendency for crystallographic orientation along the {001} planes, with a high degree of lattice strain at the interface, consistent with a coherent interfacial boundary is reported. The inclusions are enriched in Ag relative to the matrix, and seem to adopt a cubic, 96 atom per unit cell Ag2Te phase based on the Ti2Ni type structure. In‐situ high‐temperature synchrotron radiation diffraction studies indicated that the inclusions remain thermally stable to at least 800 K.  相似文献   

20.
To obtain high-performance PbS-based thermoelectric materials, this study introduces Cu with different contrasting roles in p-type PbS, which can effectively decrease the lattice thermal conductivity and simultaneously optimize the electrical transport properties. Experimental results illustrate that Cu substitutions and Cu interstitials can improve carrier mobility through lowering effective mass (m*) and carrier concentration (nH) in a low temperature range (300–450 K), and further optimize temperature-dependent nH in a high temperature range (450–823 K). Both decreased m* and nH shift the peak power factor to low temperature range, leading to an ultrahigh power factor ≈23 µW cm−1 K−2 at 423 K for Pb0.99Cu0.01S-0.01Cu. Additionally, the special dynamic-doping behaviors of Cu can continuously promote nH to approach the temperature-dependent relationship of (nH, opt) ≈ (m*T)1.5, which brings about an eminent average power factor (PFave) ≈ 18 µW cm−1 K−2 among 300–823 K in Pb0.99Cu0.01S-0.01Cu. Furthermore, the microstructure characterizations unclose that the atomic and nanoscale Cu-containing defects can effectively intensify the phonon scattering and suppress the lattice thermal conductivity. Consequently, both high ZT (≈0.2 at 300 K) and peak ZT (≈1.2 at 773 K) result in a record-high average ZT (ZTave) of ≈0.79 at 300–823 K for Pb0.99Cu0.01S-0.01Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号