首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contradiction between enlarging the offset between energy levels of donor/acceptor and the required driving force for exciton split leads to a trade‐off between open circuit voltage (VOC) and short circuit current density (JSC), which is a big challenge for development of high performance polymer solar cells (PSCs). Some advanced works reported the PSCs with low photon energy loss (Eloss) and small driving force, but the correlation of molecular structures of light‐harvesting system and driving force is still unclear. In this work, a new alkylsilyl functionalized copolymer donor PBDS‐T (PBDST: poly[(2,6trialkylsilyl thiophen2yl)benzo[1,2b:4,5b′]dithiophene))alt(5,5(1′,3′di2thienyl5′,7′bis(2ethylhexyl)benzo[1′,2′c:4′,5′c′]dithiophene4,8dione))]) with low‐lying energy levels was designed for efficient PSCs. By monitoring the Photoluminescence quenching of the bulk and bilayer heterojunctions, small driving forces, ?EHOMO of 0.15 eV and ?ELUMO of 0.22 eV were founded to allow for efficient charge transfer, which were observed to correlate with the crystalline PBDS‐T and the optimal morphology in PBDS‐T:ITIC (ITIC: 3,9bis(2methylene(3(1,1dicyanomethylene)indanone))5,5,11,11tetrakis(4hexylphenyl)dithieno[2,3d:2′,3′d′]sindaceno[1,2b:5,6b′]dithiophene). Simultaneously improved VOC, JSC and small Eloss boosted the PCE over 11%, which is one of the highest values for annealing‐free device. These results shield a light on precise design of a light‐harvesting system with small driving force to simultaneously improve the VOC and JSC for highly efficient PSCs.  相似文献   

2.
Fabricating ternary solar cells is a pivotal strategy to improve the power conversion efficiencies (PCEs) of organic photovoltaic devices. However, it is still a challenge to simultaneously improve the performance parameters of ternary devices. Therefore, the third ingredient in ternary blends should be precisely designed or selected. Herein, a new medium‐bandgap small‐molecule acceptor, namely, 3,9‐bis(2‐methylene‐(3‐(1‐(3,5‐dimethylphenyl)‐1cyanomethylene)indanone))‐5,5,11,11‐tetrakis‐(4‐hexylphenyl)dithieno[2,3‐d:2′,3′‐d′]‐sindaceno[1,2‐b:5,6‐b′]dithiophene (ITIF), is synthesized by end‐capping with a new fluorinated, asymmetric terminal group, (Z)‐2‐(3,5‐difluorophenyl)‐2‐(3‐oxo‐2,3‐dihydro‐1H‐inden‐1‐ylidene) acetonitrile. Replacing the CN substituent with the asymmetric 3,5‐difluorophenyl substituent obviously up‐shifts the lowest unoccupied molecular orbital (LUMO) level of ITIF to ?3.78 eV, enlarges the bandgap to 1.82 eV, and improves the absorption coefficient to ≈50% higher than that of 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)indanone))‐5,5,11,11‐tetrakis‐(4‐hexylphenyl)dithieno[2,3‐d:2′,3′‐d′]‐sindaceno[1,2‐b:5,6‐b′]dithiophene (ITIC). Due to the similar structures, ITIF and ITIC can combine as an alloyed acceptor, which makes it convenient to tune the morphology and optical and electrochemical properties of ternary blends. The enhanced absorption coefficient of ITIF and the rapid fluorescence resonance energy transfer from ITIF to ITIC remarkably improve the absorption of the ternary blend film, hence compensating for the external quantum efficiency (EQE) curves. When ITIF is introduced into ternary solar cells based on poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione)] (PBDB‐T):ITIF:ITIC blends, the PCEs of the ternary devices are increased from 9.2% to 10.5%, and the short‐circuit currents, open‐circuit voltages, and fill factors are simultaneously improved.  相似文献   

3.
A series of donor–acceptor (D–A) conjugated polymers utilizing 4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophene ( DTG ) as the electron rich unit and three electron withdrawing units of varying strength, namely 2‐octyl‐2H‐benzo[d][1,2,3]triazole ( BTz ), 5,6‐difluorobenzo[c][1,2,5]thiadiazole ( DFBT ) and [1,2,5]thiadiazolo[3,4‐c]pyridine ( PT ) are reported. It is demonstrated how the choice of the acceptor unit ( BTz , DFBT , PT ) influences the relative positions of the energy levels, the intramolecular transition energy (ICT), the optical band gap (Egopt), and the structural conformation of the DTG ‐based co‐polymers. Moreover, the photovoltaic performance of poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐([1,2,5]thiadiazolo[3,4‐c]pyridine)] ( PDTG‐PT ), poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐(2‐octyl‐2H‐benzo[d][1,2,3]triazole)] ( PDTG‐BTz ), and poly[(4,4‐bis(2‐ethylhexyl)‐4H‐germolo[3,2‐b:4,5‐b′]dithiophen‐2‐yl)‐(5,6‐difluorobenzo[c][1,2,5]thiadiazole)] ( PDTG‐DFBT ) is studied in blends with [6,6]‐phenyl‐C70‐butyric acid methyl ester ( PC70BM ). The highest power conversion efficiency (PCE) is obtained by PDTG‐PT (5.2%) in normal architecture. The PCE of PDTG‐PT is further improved to 6.6% when the device architecture is modified from normal to inverted. Therefore, PDTG‐PT is an ideal candidate for application in tandem solar cells configuration due to its high efficiency at very low band gaps (Egopt = 1.32 eV). Finally, the 6.6% PCE is the highest reported for all the co‐polymers containing bridged bithiophenes with 5‐member fused rings in the central core and possessing an Egopt below 1.4 eV.  相似文献   

4.
The work functions of electrodes can be modified by adding charge transport layers to have good energy level matching with the active materials for organic solar cells (OSCs). Usually, a certain material gives rise to one definite work function of an electrode. In this work it is demonstrated that complexes of poly(amido amine) (generation 3) (PAMAM) with Cu2+ can continuously tune the work function of indium tin oxide (ITO) in a range of 4–5 eV by controlling the ratio of Cu2+ to PAMAM. PAMAM can lower the work function of ITO from 4.60 to 4.07 eV, while Cu2+‐PAMAM can increase the work function. The work function increase depends on the Cu2+‐to‐PAMAM molar ratio, and the work function can be up to 4.96 eV. The Cu2+ effect is ascribed the Cu2+‐caused change in the dipole moment of PAMAM. Moreover, this method can be used to continuously modify the work function of other materials, including Ag, Au, poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate, and reduced graphene oxide. In addition, PAMAM and Cu2+‐PAMAM are investigated as the charge collection buffer materials of non‐fullerene OSCs of poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))]: 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene). The power conversion efficiency can reach 9.2%, which is comparable to that using conventional charge transport materials.  相似文献   

5.
A new wide bandgap polymer donor, PNDT‐ST, based on naphtho[2,3‐b:6,7‐b′]dithiophene (NDT) and 1,3‐bis(thiophen‐2‐yl)‐5,7‐bis(2‐ ethylhexyl)benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione (BDD) is developed for efficient nonfullerene polymer solar cells. To better match the energy levels, a new near infrared small molecule of Y6‐T is also developed. The extended π‐conjugation and less twist of PNDT‐ST provides it with higher crystallinity and stronger aggregation than the PBDT‐ST counterpart. The higher lowest occupied molecular orbital level of Y6‐T than Y6 favors the better energy level match with these polymers, resulting in improved open circuit voltage (Voc) and power conversion efficiency (PCE). The high crystallinity and strong aggregation of PNDT‐ST also induces large phase separation with poorer morphology, leading to lower fill factor and reduced PCE than PBDT‐ST. To mediate the crystallinity and optimize the morphology, PNDT‐ST and PBDT‐ST are blended together with Y6‐T, forming the ternary blend devices. As expected, the two compatible polymers allow continual optimization of the morphology by varying the blend ratio. The optimized ternary blend devices deliver a champion PCE as high as 16.57% with a very small energy loss (Eloss) of 0.521 eV. Such small Eloss is the best record for polymer solar cells with PCEs over 16% to date.  相似文献   

6.
The considerable improvement on the power conversion efficiency (PCE) for emerging nonfullerene polymer solar cells is still limited by considerable voltage losses that have become one of the most significant obstacles in further boosting desired photovoltaic performance. Here, a comprehensive study is reported to understand the impacts of charge transport, energetic disorder, and charge transfer states (CTS) on the losses in open‐circuit voltage (Voc) based on three high performing bulk heterojunction solar cells with the best PCE exceeding 11%. It is found that the champion poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene)‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)‐benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione))] (PBDB‐T):IT‐M solar cell (PCE = 11.5%) is associated with the least disorder. The determined energetic disorder in part reconciles the difference in Voc between the solar cells. A reduction is observed in the nonradiative losses (ΔVnonrad) coupled with the increase of energy of CTS for the PBDB‐T:IT‐M device, which may be related to the improved balance in carrier mobilities, and partially can explain the gain in Voc. The determined radiative limit for Voc combined with the ΔVnonrad generates an excellent agreement for the Voc with the experimental values. The results suggest that minimizing the energetic disorder related to transport and CTS is critical for the mitigation of Voc losses and improvements on the device performance.  相似文献   

7.
Poly(4,8‐didodecyl‐2,6‐bis‐(3‐methylthiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene) self‐assembled on appropriate substrates from solution and formed highly structured thin films at low temperatures. As an as‐prepared thin‐film semiconductor without thermal annealing, it exhibited excellent field‐effect transistor properties with mobility of ~ 0.15 cm2 V–1 s–1 in thin‐film transistors.  相似文献   

8.
This work develops a combinational use of solvent additive and in‐line drying oven on the flexible organic photovoltaics to improve large‐area roll‐to‐roll (R2R) slot‐die coating process. Herein, addition of 1,8‐diiodooctane (DIO) in the photoactive layer is conducted to yield a performance of 3.05% based on the blending of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl C61‐butyric acid methyl ester (PC61BM), and a very promising device performance of 7.32% based on the blending of poly[[4,8‐bis[(2‐ethylhexyl)oxy] benzo[1,2‐b:4,5‐b’] dithiophene‐2,6‐diyl] [3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7) and [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM). Based on this R2R slot‐die coating approach for various polymers, we demonstrate the high‐performance result with respect to the up‐scaling from small high‐PCE cell to large‐area module. This present study provides a route for fabricating a low‐cost, large‐area, and environmental‐friendly flexible organic photovoltaics.  相似文献   

9.
The molecular packing motifs within crystalline domains should be a key determinant of charge transport in thin‐film transistors (TFTs) based on small organic molecules. Despite this implied importance, detailed information about molecular organization in polycrystalline thin films is not available for the vast majority of molecular organic semiconductors. Considering the potential of fused thiophenes as environmentally stable, high‐performance semiconductors, it is therefore of interest to investigate their thin film microstructures in relation to the single crystal molecular packing and OTFT performance. Here, the molecular packing motifs of several new benzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene ( BTDT ) derivatives are studied both in bulk 3D crystals and as thin films by single crystal diffraction and grazing incidence wide angle X‐ray scattering (GIWAXS), respectively. The results show that the BTDT derivative thin films can have significantly different molecular packing from their bulk crystals. For phenylbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene ( P‐BTDT ), 2‐biphenylbenzo[d,d′]thieno‐[3,2‐b;4,5‐b′]dithiophene ( Bp‐BTDT ), 2 ‐naphthalenyl benzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene ( Np‐BTDT ), and bisbenzo[d,d′]thieno[3,2‐b;4,5‐b′]dithiophene ( BBTDT ), two lattices co‐exist, and are significantly strained versus their single crystal forms. For P‐BTDT , the dominance of the more strained lattice relative to the bulk‐like lattice likely explains the high carrier mobility. In contrast, poor crystallinity and surface coverage at the dielectric/substrate interface explains the marginal OTFT performance of seemingly similar PF‐BTDT films.  相似文献   

10.
In this study, we investigate the influence of molecular geometry of the donor polymers and the perylene diimide dimers (di‐PDIs) on the bulk heterojunction (BHJ) morphology in the nonfullerene polymer solar cells (PSCs). The results reveal that the pseudo 2D conjugated poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)] (PTB7‐Th) has better miscibility with both bay‐linked di‐PDI (B‐di‐PDI) and hydrazine‐linked di‐PDI (H‐di‐PDI) compared to its 1D analog, poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]] (PTB7), to facilitate more efficient exciton dissociation in the BHJ films. However, the face‐on oriented π–π stacking of PTB7‐Th is severely disrupted by the B‐di‐PDI due to its more flexible structure. On the contrary, the face‐on oriented π–π stacking is only slightly disrupted by the H‐di‐PDI, which has a more rigid structure to provide suitable percolation pathways for charge transport. As a result, a very high power conversion efficiency (PCE) of 6.41% is achieved in the PTB7‐Th:H‐di‐PDI derived device. This study shows that it is critical to pair suitable polymer donor and di‐PDI‐based acceptor to obtain proper BHJ morphology for achieving high PCE in the nonfullerene PSCs.  相似文献   

11.
Two novel wide bandgap copolymers based on quinoxalino[6,5‐f]quinoxaline (NQx) acceptor block, PBDT–NQx and PBDTS–NQx, are successfully synthesized for efficient nonfullerene polymer solar cells (PSCs). The attached conjugated side chains on both benzodithiophene (BDT) and NQx endow the resulting copolymers with low‐lying highest occupied molecular orbital (HOMO) levels. The sulfur atom insertion further reduces the HOMO level of PBDTS–NQx to ?5.31 eV, contributing to a high open‐circuit voltage, V oc, of 0.91 V. Conjugated n ‐octylthienyl side chains attached on the NQx skeletons also significantly improve the π–π* transitions and optical absorptions of the copolymers in the region of short wavelengths, which induce a good complementary absorption when blending with the low bandgap small molecular acceptor of 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene. The wide absorption range makes the active blends absorb more photons, giving rise to a high short‐circuit current density, J sc, value of 15.62 mA cm?2. The sulfur atom insertion also enhances the crystallinity of PBDTS–NQx and presents its blend film with a favorable nanophase separation, resulting in improved J sc and fill factor (FF) values with a high power conversion efficiency of 11.47%. This work not only provides a new fused ring acceptor block (NQx) for constructing high‐performance wide bandgap copolymers but also provides the NQx‐based copolymers for achieving highly efficient nonfullerene PSCs.  相似文献   

12.
In this study, the solubility properties of a given ternary blend set, with two donors (poly(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl (PTB7‐Th) and benzo[1,2‐b;4,5‐b′]dithiophene‐based small molecule (DR3TSBDT)) and one acceptor ([6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM)), in a series of solvents are determined, and active material–solvent interactions are used as an aid for finding suitable nonchlorinated solvents to achieve effective ternary organic solar cells (OSCs) based on PTB7‐Th:DR3TSBDT:PC71BM. An exceptional power conversion efficiency (PCE) as high as 12.3% (certified 11.94%) is obtained using the developed nonhalogenated processing system. In‐depth investigations (morphology, charge mobility, recombination dynamics, and OSC characteristics) uncover the underlying structure–property relationships as a function of the chosen nonhalogenated systems. Another intriguing finding of this study is the formation of a cubic bimolecular crystal structure of PTB7‐Th:PC71BM in a nonhalogenated system, which is the first such demonstration in blend films. This sheds light upon the fact that the physical properties of a material applied from different solutions may surpass the variation in the properties between two material having totally different molecular structure. Therefore, this work not only offers important scientific insights into developing highly efficient and eco‐friendly OSCs but also improves our understanding of achievable bimolecular crystals with an intercalated structure.  相似文献   

13.
Two novel semiconducting polymers based on benzodithiophene and dithienophosphole oxide (DTP) units are designed and synthesized. A novel electron‐deficient DTP moiety is developed. Surprisingly, the introduction of DTP units brings highly polarizable characteristics, which is beneficial for the photocurrent in solar cells. Thus, the donor–acceptor type of conjugated polymers based on this novel acceptor has superior charge transfer properties and highly efficient PL quenching efficiencies. As a result, polymer solar cells (PSCs) with high power conversion efficiencies of 6.10% and 7.08% are obtained from poly(3,5‐didodecyl‐4‐phenylphospholo[3,2‐b:4,5‐b']dithiophene–4‐oxide‐alt‐4,8‐bis(5‐decylthiophen‐2‐yl)benzo[1,2‐b:4,5‐b']dithiophene) (PDTP–BDTT) and PDTP–4‐oxide‐alt‐4,8‐bis(5‐decylselenophen‐2‐yl)benzo[1,2‐b:4,5‐b']dithiophene) (PDTP–BDTSe), respectively, when the photoactive layer is processed with the 1,8‐octanedithiol (ODT) additive. The PDTP–BDTSe copolymer is now the best performing DTP‐based material for PSCs. Using the polarizable unit strategy determined in this study for the molecular design of conjugated polymers is expected to greatly advance the development of organic electronic devices.  相似文献   

14.
Well‐defined small molecule (SM) donors can be used as alternatives to π‐conjugated polymers in bulk‐heterojunction (BHJ) solar cells with fullerene acceptors (e.g., PC61/71BM). Taking advantage of their synthetic tunability, combinations of various donor and acceptor motifs can lead to a wide range of optical, electronic, and self‐assembling properties that, in turn, may impact material performance in BHJ solar cells. In this report, it is shown that changing the sequence of donor and acceptor units along the π‐extended backbone of benzo[1,2‐b:4,5‐b′]dithiophene–6,7‐difluoroquinoxaline SM donors critically impacts (i) molecular packing, (ii) propensity to order and preferential aggregate orientations in thin‐films, and (iii) charge transport in BHJ solar cells. In these systems ( SM1‐3 ), it is found that 6,7‐difluoroquinoxaline ([2F]Q) motifs directly appended to the central benzo[1,2‐b:4,5‐b′]dithiophene (BDT) unit yield a lower‐bandgap analogue ( SM1 ) with favorable molecular packing and aggregation patterns in thin films, and optimized BHJ solar cell efficiencies of ≈6.6%. 1H‐1H DQ‐SQ NMR analyses indicate that SM1 and its counterpart with [2F]Q motifs substituted as end‐group SM3 possess distinct self‐assembly patterns, correlating with the significant charge transport and BHJ device efficiency differences observed for the two analogous SM donors (avg. 6.3% vs 2.0%, respectively).  相似文献   

15.
A diphenylphosphine-oxide-based conjugated organic molecule, ((1,3,5-triazine-2,4,6-triyl)tris(benzene-3,1-diyl))tris(diphenylphosphine oxide) (PO-T2T), was doped into ZnO to improve the characteristics of the electron transport layer (ETL) in inverted organic solar cells (OSCs). A series of characterization techniques were carried out to demonstrate the function of PO-T2T in film aspect, including transmittance, atomic force microscopy (AFM), transmission electron microscopy (TEM), water contact angle and grazing incidence wide angle X-ray scattering (GIWAXS). Light dependent, space-charge-limited current, exciton dissociation possibility were aimed to explore the influence of PO-T2T for internal carrier behaviors based on PTB7-Th: PC71BM system. It's found that the PO-T2T doped ETLs played a role in morphology optimization of ETL and undermined the trap-assistant recombination through filling the defects ZnO itself had, simultaneously. Besides, the electron mobility was also improved. With the optimized functionalities, the OSCs' efficiency based on fullerene system Poly[4,8- bis(5-(2-Ethylhexyl)thiophen-2-yl) benzo [1,2-b:4,5-b′] dithiophene-co-3-fluorothieno [3,4-b] thiophene-2-carboxylate] (PTB7-Th): [6,6]-Phenyl C71 butyric acid methyl ester (PC71BM) was improved from 9.03% to 9.84%. Finally, when this strategy was applied into another hot-topic system, poly((2,6-(4,8-bis(5-(2-ethylhexyl-3- fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5- (1′,3′-di-2-thienyl)-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′] dithiophene-4,8-dione)) (PBDB-TF):2,2′-((2Z,2′Z)-((12,13-bis(2- ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e] thieno[2,″3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5] thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (Y6), a high PCE of 16.34% was obtained. These results demonstrated that the PO-T2T had a positive role in OSC performance improvement.  相似文献   

16.
Organic solar cells utilizing the small molecule donor 7,7′‐(4,4‐bis(2‐ethylhexyl)‐4H‐silolo[3,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)bis(6‐fluoro‐4‐(5′‐hexyl‐[2,2′‐bithiophen]‐5‐yl)benzo[c][1,2,5] thiadiazole) (p‐DTS(FBTTh2)2 and the polymer acceptor poly{[N,N′‐bis(2‐octyldodecyl)‐1,4,5,8‐naphthalenedicarboximide‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)}(P(NDI2OD‐T2)) are investigated and a power conversion efficiency of 2.1% is achieved. By systematic study of bulk heterojunction (BHJ) organic photovoltaic (OPV) quantum efficiency, film morphology, charge transport and extraction and exciton diffusion, the loss processes in this blend is revealed compared to the blend of [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) and the same donor. An exciton diffussion study using Förster resonant energy transfer (FRET) shows the upper limit of the P(NDI2OD‐T2) exciton diffusion length to be only 1.1 nm. The extremely low exciton diffusion length of P(NDI2OD‐T2), in combination with the overlap in donor and acceptor absorption, is then found to significantly limit device performance. These results suggest that BHJ OPV devices utilizing P(NDI2OD‐T2) as an acceptor material will likely be limited by its low exciton diffusion length compared to devices utilizing functionalized fullerene acceptors, especially when P(NDI2OD‐T2) significantly competes with the donor molecule for photon absorption.  相似文献   

17.
Apparent recombination orders exceeding the value of two expected for bimolecular recombination have been reported for organic solar cells in various publications. Two prominent explanations are bimolecular losses with a carrier concentration dependent prefactor due to a trapping limited mobility and protection of trapped charge carriers from recombination by a donor–acceptor phase separation until re‐emission from these deep states. In order to clarify which mechanism is dominant temperature‐ and illumination‐dependent charge extraction measurements are performed under open circuit and short circuit conditions at poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61 butyric acid methyl ester (P3HT:PC61BM) and PTB7:PC71BM (poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]]) solar cells in combination with current–voltage characteristics. It is shown that the charge carrier density n dependence of the mobility μ and the recombination prefactor are different for P3HT:PC61BM at temperatures below 300 K and PTB7:PC71BM at room temperature. Therefore, in addition to μ(n), a detrapping limited recombination in systems with at least partial donor–acceptor phase separation is required to explain the high recombination orders.  相似文献   

18.
The photoconductive properties of a novel low‐bandgap conjugated polymer, poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)], PCPDTBT, with an optical energy gap of Eg ~ 1.5 eV, have been studied. The results of photoluminescence and photoconductivity measurements indicate efficient electron transfer from PCPDTBT to PCBM ([6,6]‐phenyl‐C61 butyric acid methyl ester, a fullerene derivative), where PCPDTBT acts as the electron donor and PCBM as the electron acceptor. Electron‐transfer facilitates charge separation and results in prolonged carrier lifetime, as observed by fast (t > 100 ps) transient photoconductivity measurements. The photoresponsivities of PCPDTBT and PCPDTBT:PCBM are comparable to those of poly(3‐hexylthiophene), P3HT, and P3HT:PCBM, respectively. Moreover, the spectral sensitivity of PCPDTBT:PCBM extends significantly deeper into the infrared, to 900 nm, than that of P3HT. The potential of PCPDTBT as a material for high‐efficiency polymer solar cells is discussed.  相似文献   

19.
Despite the rapid development of nonfullerene acceptors (NFAs), the fundamental understanding on the relationship between NFA molecular architecture, morphology, and device performance is still lacking. Herein, poly[[4,8‐bis[5‐(2‐ethylhexyl)thiophene‐2‐yl]benzo[1,2‐b:4,5‐b0]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]‐thieno[3,4‐b]thiophenediyl]] (PTB7‐Th) is used as the donor polymer to compare an NFA with a 3D architecture (SF‐PDI4) to a well‐studied NFA with a linear acceptor–donor–acceptor (A–D–A) architecture (ITIC). The data suggest that the NFA ITIC with a linear molecular structure shows a better device performance due to an increase in short‐circuit current ( Jsc) and fill factor (FF) compared to the 3D SF‐PDI4. The charge generation dynamics measured by femtosecond transient absorption spectroscopy (TAS) reveals that the exciton dissociation process in the PTB7‐Th:ITIC films is highly efficient. In addition, the PTB7‐Th:ITIC blend shows a higher electron mobility and lower energetic disorder compared to the PTB7‐Th:SF‐PDI4 blend, leading to higher values of Jsc and FF. The compositional sensitive resonant soft X‐ray scattering (R‐SoXS) results indicate that ITIC molecules form more pure domains with reduced domain spacing, resulting in more efficient charge transport compared with the SF‐PDI4 blend. It is proposed that both the molecular structure and the corresponding morphology of ITIC play a vital role for the good solar cell device performance.  相似文献   

20.
Charge transport properties of common donor copolymers in organic photovoltaics, poly({4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl}{3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl}) (PTB7) and poly([2,6′‐4,8‐di(5‐ethylhexylthienyl)benzo[1,2‐b;3,3‐b]dithiophene]{3‐fluoro‐2[(2‐ethylhexyl) carbonyl]thieno[3,4‐b]thiophenediyl}) (PTB7‐Th), with molecular structures differing only in the pendant group, are studied. This is the first report of field‐effect transistor mobility (µFET) of PTB7‐Th (0.14 cm2 V?1 s?1) and the highest µFET for PTB7 (0.01 cm2 V?1 s?1). µFET of PTB7‐Th is found to be almost one order of magnitude higher than PTB7. To understand the influence of molecular structure on charge transport, hole reorganization energy (λh) is calculated from first‐principles. λh of PTB7‐Th (≈150 meV) is found to be lower than PTB7 (≈346 meV). Further, the ratio of hopping rate versus square of charge transfer integral calculated from Marcus theory using λh for these systems is found to indicate a higher rate of hole transfer across dimers or homojunction interface for PTB7‐Th. These results are supplemented by experimentally determined λ using bulk‐heterojunction organic solar cells, where λPTB7‐Th≈200 meV and λPTB7≈310 meV follow a similar trend. The effective hole‐mobility estimation from BHJ devices correlates well with these λ values. This study provides understanding of charge transport properties via reorganization energy, as a function of pendant group without altering the backbone of the chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号