首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impact of controlled solvent vapor exposure on the morphology, structural evolution, and function of solvent‐processed poly(3‐hexylthiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) bilayers is presented. Grazing incident wide angle X‐ray scattering (GIWAXS) shows that the crystallization of P3HT increases with solvent exposure, while neutron reflectivity shows that P3HT simultaneously diffuses into PCBM, indicating that an initial bilayer structure evolves into a bulk heterojunction structure. Small angle neutron scattering (SANS) shows the agglomeration of PCBM and the formation of a PCBM pure phase when solvent annealing for 90 min. The structural evolution can be described as occurring in two stages: the first stage combines the enhanced crystallization of P3HT and diffusion of PCBM into P3HT, while the second stage entails the agglomeration of PCBM and formation of a PCBM pure phase. The phase separation of PCBM from P3HT is not driven by P3HT crystallinity, but is due to the concentration of PCBM exceeding the miscibility limit of PCBM in P3HT. Correlation of the morphology to photovoltaic activity shows that device performance significantly improves with solvent annealing for 90 min, indicating that both sufficient P3HT crystallization and formation of a PCBM pure phase are crucial in the optimization of the morphology of the active layer.  相似文献   

2.
One way to improve power conversion efficiency (PCE) of polymer based bulk‐heterojunction (BHJ) photovoltaic cells is to increase the open circuit voltage (V oc). Replacing PCBM with bis‐adduct fullerenes significantly improves V oc and the PCE in devices based on the conjugated polymer poly(3‐hexyl thiophene) (P3HT). However, for the most promising low band‐gap polymer (LBP) system, replacing PCBM with ICBA results in poor short‐circuit current (J sc) and PCE although V oc is significantly improved. The optimization of the morphology of as‐cast LBP/bis‐fullerene BHJ photovoltaics is attempted by adding a co‐solvent to the polymer/fullerene solution prior to film deposition. Varying the solubility of polymer and fullerene in the co‐solvent, bulk heterojunctions are fabricated with no change of polymer ordering, but with changes in fullerene phase separation. The morphologies of the as‐cast samples are characterized by small angle neutron scattering and neutron reflectometry. A homogenous dispersion of ICBA in LBP is found in the samples where the co‐solvent is selective to the polymer, giving poor device performance. Aggregates of ICBA are formed in samples where the co‐solvent is selective to ICBA. The resultant morphology improves PCE by up to 246%. A quantitative analysis of the neutron data shows that the interfacial area between ICBA aggregates and its surrounding matrix is improved, facilitating charge transport and improving the PCE.  相似文献   

3.
Studies on the influence of four different solvents on the morphology and photovoltaic performance of bulk‐heterojunction films made of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) via spin‐coating for photovoltaic applications are reported. Solvent‐dependent PCBM cluster formation and P3HT crystallization during thermal annealing are investigated with optical microscopy and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) and are found to be insufficient to explain the differences in device performance. A combination of atomic force microscopy (AFM), X‐ray reflectivity (XRR), and grazing‐incidence small‐angle X‐ray scattering (GISAXS) investigations results in detailed knowledge of the inner film morphology of P3HT:PCBM films. Vertical and lateral phase separation occurs during spin‐coating and annealing, depending on the solvent used. The findings are summarized in schematics and compared with the IV characteristics. The main influence on the photovoltaic performance arises from the vertical material composition and the existence of lateral phase separation fitting to the exciton diffusion length. Absorption and photoluminescence measurements complement the structural analysis.  相似文献   

4.
The one‐step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3‐hexylthiophene) (P3HT) as well as P3HT:fullerene bulk–heterojunction blends can be spin‐coated from a mixture of the crystallizable solvent 1,3,5‐trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square‐centimeter‐sized domains that are composed of one spherulite‐like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite‐like structures. Moreover, grazing‐incidence wide‐angle X‐ray scattering reveals an increased relative degree of crystallinity and predominantly flat‐on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip‐coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi‐crystalline conjugated polymer systems is established. Those include other poly(3‐alkylthiophene)s, two polyfluorenes, the low band‐gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends.  相似文献   

5.
The performance of polymer solar cells (PSC) strongly depends on the 3D morphological organization of the donor and acceptor compounds within the bulk heterojunction active layer. The technique of electron tomography is a powerful tool for studying 3D morphology of the layers composed of poly(3‐hexylthiophene) (P3HT) and a fullerene derivative ([6,6]‐phenyl‐C61‐butyric acid methyl ester; PCBM), especially to quantify the amount and distribution of fibrillar P3HT nanocrystals throughout the volume of the active layer. In this study, electron tomography is used to characterize P3HT/PCBM layers with different blend compositions, both before and after thermal annealing. The power conversion efficiency of the corresponding PSCs is strongly dependent on the overall crystallinity of P3HT and the way P3HT crystals are distributed throughout the thickness of the active layer.  相似文献   

6.
Grazing incidence X‐ray scattering (GIXS) is used to characterize the morphology of poly(3‐hexylthiophene) (P3HT)–phenyl‐C61‐butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom‐built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well‐oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer–fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high‐performance organic solar cell devices.  相似文献   

7.
A series of [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM)‐like fullerene derivatives with the butyl chain in PCBM changing from 3 to 7 carbon atoms, respectively (F1–F5), are designed and synthesized to investigate the relationship between photovoltaic properties and the molecular structure of fullerene derivative acceptors. F2 with a butyl chain is PCBM itself for comparison. Electrochemical, optical, electron mobility, morphology, and photovoltaic properties of the molecules are characterized, and the effect of the alkyl chain length on their properties is investigated. Although there is little difference in the absorption spectra and LUMO energy levels of F1–F5, an interesting effect of the alkyl chain length on the photovoltaic properties is observed. For the polymer solar cells (PSCs) based on P3HT as donor and F1–F5, respectively, as acceptors, the photovoltaic behavior of the P3HT/F1 and P3HT/F4 systems are similar to or a little better than that of the P3HT/PCBM device with power conversion efficiencies (PCEs) above 3.5%, while the performances of P3HT/F3 and P3HT/F5‐based solar cells are poorer, with PCE values below 3.0%. The phenomenon is explained by the effect of the alkyl chain length on the absorption spectra, fluorescence quenching degree, electron mobility, and morphology of the P3HT/F1–F5 (1:1, w/w) blend films.  相似文献   

8.
《Organic Electronics》2014,15(5):1002-1011
Bipolar FETs (BiFETs) based on the bulk heterojunction system comprised of various ratios of P3HT and soluble fullerene derivatives are demonstrated. We studied the effect of addition of small concentrations of the processing additive, 1,8-octanedithiol (ODT), on gate-induced transport properties. The control blend system consisting of poly (3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) showed enhanced hole transport properties with the addition of the ODT additive. However, electron transport properties were diminished in the presence of ODT additive because of the relatively isolated PCBM phase between the large-scale segregation of the P3HT amorphous phase. The BHJ BiFET based on P3HT and soluble fullerene derivatives bearing long alkyl tails (FP-Ph-OC10) showed enhanced performance in both hole and electron transport when the ODT additive was applied. We attribute the enhancement of hole mobility to well-formed P3HT fibrilla structures of P3HT caused by the alkyl–alkyl interaction assisted by both the ODT additive and alkyl side chain in FP-Ph-OC10. As the P3HT forms fibrilla structures, connection to the isolated FP-Ph-OC10 phase be formed, resulting in a continuous electron pathway, thereby improving electron mobility. This suggests that not only the selective solubility, but also the alkyl-alkyl interaction between the side-chain and ODT additive may affect the phase segregation of BHJ mixtures.  相似文献   

9.
We utilize transient techniques to directly compare the operation of polymer/fullerene, polymer/nanocrystal, and polymer/polymer bulk heterojunction solar cells. For all devices, poly(3‐hexylthiophene) (P3HT) is used as the electron donating polymer, in combination with either the fullerene derivative phenyl‐C61‐butyric acid methyl ester (PCBM) in polymer/fullerene cells, CdSe nanoparticles in polymer/nanocrystal cells, or the polyfluorene copolymer poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(3‐hexylthien‐5‐yl)‐2,1,3‐benzothiadiazole]‐2,2‐diyl) (F8TBT) in polymer/polymer cells. Transient photocurrent and photovoltage measurements are used to probe the dynamics of charge‐separated carriers, with vastly different dynamic behavior observed for polymer/fullerene, polymer/polymer, and polymer/nanocrystal devices on the microsecond to millisecond timescale. Furthermore, by employing transient photocurrent analysis with different applied voltages we are also able to probe the dynamics behavior of these cells from short circuit to open circuit. P3HT/F8TBT and P3HT/CdSe devices are characterized by poor charge extraction of the long‐lived carriers attributed to charge trapping. P3HT/PCBM devices, in contrast, show relatively trap‐free operation with the variation in the photocurrent decay kinetics with applied bias at low intensity, consistent with the drift of free charges under a uniform electric field. Under solar conditions at the maximum power point, we see direct evidence of bimolecular recombination in the P3HT/PCBM device competing with charge extraction. Transient photovoltage measurements reveal that, at open circuit, photogenerated charges have similar lifetimes in all device types, and hence, the extraction of these long‐lived charges is a limiting process in polymer/nanocrystal and polymer/polymer devices.  相似文献   

10.
Solvent additives have been explored as a reliable way to control the morphology in bulk-heterojunction (BHJ) layers for improved device performance. We show that the choice of solvent additives has direct implications on morphological evolution, i.e. poly(3-hexylthiophene) (P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PCBM) BHJ films processed with a small amount of 1,8-diiodooctane or 1-chloronaphthalene have more crystalline PCBM domains compared to crystalline P3HT domains, while the opposite is true for films cast with nitrobenzene additive and films cast purely from chlorobenzene. The BHJ film cross-links when annealed at 300 °C in the presence of 1,8-diiodooctane. Cross-linking is found to occur even in pristine P3HT and PCBM films annealed under similar conditions. NMR spectroscopy is presented as a viable technique for quantitative analysis of the amount of solvents left in the BHJ films before and after heat treatment. Despite differences in the ways the additives affect the morphology of the BHJ layer, device performance remained stable over 300 h for all additives tested.  相似文献   

11.
An effective method for preparing poly(3-hexylthiophene) (P3HT) coated graphene oxide (GO), (P-GO), based on an ethanol mediated mixing and solvent evaporation method is described. P-GO exhibits good dispersibility in the non-polar solvent o-dichlorobenzene (DCB) allowing the preparation of polymer blend composites. P-GO was doped into P3HT: PCBM blends by solution mixing and shown to facilitate phase separation of P3HT and PCBM in P3HT: PCBM blend films to achieve a more optimum morphology for polymer photovoltaic cells. Bulk heterojunction P3HT: PCBM solar cells exhibit ∼18% power conversion efficiency enhancement in the presence of P-GO.  相似文献   

12.
Knowledge about the working mechanism of the PbS:P3HT:PCBM [P3HT=poly(3‐hexylthiophene), PCBM=[6,6]‐phenyl‐C61 ‐butyric acid methyl ester] hybrid blend used for efficient near‐infrared photodiodes is obtained from time‐resolved photoluminescence (PL) studies. To understand the role of each component in the heterojunction, the PL dynamics of the ternary (PbS:P3HT:PCBM) blend and the binary (PbS:P3HT, PbS:PCBM and P3HT:PCBM) blends are compared with the PL of the pristine PbS nanocrystals (NCs) and P3HT. In the ternary blend the efficiency of the charge transfer is significantly enhanced compared to the one of PbS:P3HT and PbS:PCBM blends, indicating that both hole and electron transfer from excited NCs to the polymer and fullerene occur. The hole transfer towards the P3HT determines the equilibration of their population in the NCs after the electron transfer towards PCBM, allowing their re‐excitation and new charge transfer process.  相似文献   

13.
Photocrosslinkable bromine‐functionalized poly(3‐hexylthiophene) (P3HT‐Br) copolymers designed for application in solution‐processed organic photovoltaics are prepared by copolymerization of 2‐bromo‐3‐(6‐bromohexyl) thiophene and 2‐bromo‐3‐hexylthiophene. The monomer ratio is carefully controlled to achieve a UV photocrosslinkable layer while retaining the π–π stacking feature of the conjugated polymers. The new materials are used as electron donors in both bulk heterojunction (BHJ) and bilayer type photovoltaic devices. Unlike devices prepared from either P3HT:PCBM blend or P3HT‐Br:PCBM blend without UV treatment, photocrosslinked P3HT‐Br:PCBM devices are stable even when annealed for two days at the elevated temperature of 150 °C as the nanophase separated morphology of the bulk heterojunction is stabilized as confirmed by optical microscopy and grazing incidence wide angle X‐ray scattering (GIWAXS). When applied to solution‐processed bilayer devices, the photocrosslinkable materials show high power conversion efficiencies (~2%) and excellent thermal stability (3 days at 150 °C). Such performance, one of the highest obtained for a bilayer device fabricated by solution processing, is achieved as crosslinking does not disturb the π–π stacking of the polymer as confirmed by GIWAXS measurements. These novel photocrosslinkable materials provide ready access to efficient bilayer devices thus enabling the fundamental study of photophysical characteristics, charge generation, and transport across a well‐defined interface.  相似文献   

14.
Low bandgap polymer (LBG):fullerene mixtures are some of the most promising organic photovoltaic active layers. Unfortunately, there are no post‐deposition treatments available to rationally improve the morphology and performance of as‐cast LBG:fullerene OPV active layers, where thermal annealing usually fails. Therefore, there is a glaring need to develop post‐deposition methods to guide the morphology of LBG:fullerene bulk heterojunctions towards targeted structures and performance. In this paper, the structural evolution of PCPDTBT:PCBM mixtures with solvent annealing (SA) is examined, focusing on the effect of solvent quality of the fullerene and polymer in the annealing vapor on morphological evolution and device performance. The results indicate that exposure of this active layer to the solvent vapor controls the ordering of PCPDTBT and PCBM phase separation very effectively, presumably by inducing component mobility as the solvent plasticizes the mixture. These results also unexpectedly indicate that solvent annealing in a selective solvent provides a method to invert the morphology of the LBG:fullerene mixture from a polymer aggregate dispersed in a polymer:fullerene matrix to fullerene aggregates dispersed in a polymer:fullerene matrix. The judicious choice of solvent vapor, therefore, provides a unique method to exquisitely control and optimize the morphology of LBG conjugated polymer/fullerene mixtures.  相似文献   

15.
As organic photovoltaic efficiencies steadily improve, understanding degradation pathways becomes increasingly important. In this paper, the stability under prolonged illumination of a prototypical polymer:fullerene active layer is studied without the complications introduced by additional layers and interfaces in complete devices. Combining contactless photoconductivity with spectroscopy, structural characterization at the molecular and film level, and quantum chemical calculations, the mechanism of photoinduced degradation in bulk heterojunctions of poly (3‐hexylthiophene) (P3HT) and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) is studied. Bare films are subjected to four conditions for 1000 h with either constant illumination or dark and either ambient or inert atmosphere. All samples are found to be intrinsically stable for 1000+ h under inert conditions, in contrast to complete devices. While PCBM stabilizes P3HT films exposed to air, its fullerene cage is found to undergo a series of oxidations that are responsible for the deterioration of the photoconductivity of the material. Quantum chemical calculations show that PCBM oxides have deeper LUMO levels than pristine PCBM and therefore act as traps for electrons in the PCBM domains.  相似文献   

16.
We investigate thin poly(3‐hexylthiophene‐2,5‐diyl)/[6,6]‐phenyl C61 butyric acid methyl ester (P3HT/PCBM) films, which are widely used as active layers in plastic solar cells. Their structural properties are studied by grazing‐incidence X‐ray diffraction (XRD). The size and the orientation of crystalline P3HT nanodomains within the films are determined. PCBM crystallites are not detected in thin films by XRD. Upon annealing, the P3HT crystallinity increases, leading to an increase in the optical absorption and spectral photocurrent in the low‐photon‐energy region. As a consequence, the efficiency of P3HT/PCBM solar cells is significantly increased. A direct relation between efficiency and P3HT crystallinity is demonstrated.  相似文献   

17.
We present a detailed study of the effects of ternary mixing on blend morphology, charge carrier mobility and organic solar cell performance. We investigate ternaries consisting of regio random poly(3-hexylthiophene) (P3HT), regio regular P3HT and soluble fullerene derivative, PCBM. By means of absorption, photoluminescence, atomic force microscopy and X-ray diffraction, we demonstrate that the structure of ternary films consists of crystallites of regular P3HT embedded into a random polymer matrix acting as a soft scaffolding where PCBM can only form nanoscale aggregates but cannot grow the detrimental micron-sized structures often observed in the conventional regular P3HT:PCBM case upon annealing. The ternary films exhibit higher degree of crystallinity than the conventional blends, but with smaller crystallite sizes. Moreover, we show that the addition of the random polymer chains does not prevent good charge carrier transport for regio random P3HT concentrations up to 50% of the total polymer content. Finally, we prove that solar cells based on the ternary systems have a similar short circuit current than the conventional binary, but improved open circuit current (by 100 mV), which leads to an overall enhancement of power conversion efficiency.  相似文献   

18.
The performance of bulk‐heterojunction (BHJ) solar cells is strongly correlated with the nanoscale structure of the active layer. Various processing techniques have been explored to improve the nanoscale morphology of the BHJ layer, e.g., by varying the casting solvent, thermal annealing, solvent annealing, and solvent additives. This paper highlights the role of residual solvent in the “dried” BHJ layer, and the effect of residual solvents on PCBM diffusion and ultimately the stability of the morphology. We show that solvent is retained within the BHJ film despite prolonged heat treatment, leading to extensive phase separation, as demonstrated by the growth in the size and quantity of PCBM agglomerates. The addition of a small volume fraction of nitrobenzene to the casting solution inhibits the diffusion of PCBM in the dry film, resulting in smaller PCBM agglomerates, and improves the fill factor of the BHJ device to 0.61 without further tempering. The addition of nitrobenzene also increases the P3HT crystalline content, while increasing the onset temperature for melting of P3HT side chains and backbone. The melting temperature for PCBM is also higher with the nitrobenzene additive present.  相似文献   

19.
The in situ morphology change upon thermal annealing in bulk heterojunction blend films of regioregular poly(3‐hexylthiophene) (P3HT) and 1‐(3‐methoxycarbonyl)‐propyl‐1‐phenyl‐(6,6)C61 (PCBM) is measured by a grazing incidence X‐ray diffraction (GIXD) method using a synchrotron radiation source. The results show that the film morphology—including the size and population of P3HT crystallites—abruptly changes at 140 °C between 5 and 30 min and is then stable up to 120 min. This trend is almost in good agreement with the performance change of polymer solar cells fabricated under the same conditions. The certain morphology change after 5 min annealing at 140 °C is assigned to the on‐going thermal transition of P3HT molecules in the presence of PCBM transition. Field‐emission scanning electron microscopy measurements show that the crack‐like surface of blend films becomes smaller after a very short annealing time, but does not change further with increasing annealing time. These findings indicate that the stability of P3HT:PCBM solar cells cannot be secured by short‐time annealing owing to the unsettled morphology, even though the resulting efficiency is high.  相似文献   

20.
Solution‐processed thin polymer films have many applications, such as organic electronics and block‐copolymer nanofabrication. These films are often made by spin coating a solution that contains one or more solids and can show different phase‐separated structures. The formation mechanism of the droplet‐like morphology is studied here by processing polystyrene (PS) and a fullerene derivative ([6,6]‐phenyl‐C71‐butyric acid methyl ester, [70]PCBM) from o‐xylene. The final structure consists of [70]PCBM droplets partially embedded in a PS‐rich matrix showing interdomain distance of 100–1000 nm as determined from transmission electron microscopy and grazing incidence small angle X‐ray scattering (GISAXS). To elucidate the formation of these morphologies in real time, ultrafast in situ GISAXS coupled with laser interferometry and laser scattering is performed during spin coating. In situ thickness measurements and laser scattering show that liquid–liquid phase separation occurs at ≈70 vol% solvent. Subsequently, in only 100–400 ms, almost dry [70]PCBM domains start to protrude from the swollen PS‐rich matrix. These results are used to verify the ternary phase diagram calculated using Flory–Huggins theory. The discussed multitechnique approach can be applied to study fundamental aspects in soft matter such as phase separation in thin films occurring at very short time scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号