首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rechargeable aqueous Zn‐based batteries, benefiting from their good reliability, low cost, high energy/power densities, and ecofriendliness, show great potential in energy storage systems. However, the poor cycling performance due to the formation of Zn dendrites greatly hinders their practical applications. In this work, a trilayer 3D CC‐ZnO@C‐Zn anode is obtained by in situ growing ZIFs (zeolitic‐imidazolate frameworks) derived ZnO@C core–shell nanorods on carbon cloth followed by Zn deposition, which exhibits excellent antidendrite performance. Using CC‐ZnO@C‐Zn as the anode and a branch‐like Co(CO3)0.5(OH)x·0.11H2O@CoMoO4 (CC‐CCH@CMO) as the cathode, a Zn–Co battery is rationally designed, displaying excellent energy/power densities (235 Wh kg?1, 12.6 kW kg?1) and remarkable cycling performance (71.1% after 5000 cycles). Impressively, when using a gel electrolyte, a highly customizable, fiber‐shaped flexible all‐solid‐state Zn–Co battery is assembled for the first time, which presents a high energy density of 4.6 mWh cm?3, peak power density of 0.42 W cm?3, and long durability (82% capacity retention after 1600 cycles) as well as excellent flexibility. The unique 3D electrode design in this study provides a novel approach to achieve high‐performance Zn‐based batteries, showing promising applications in flexible and portable energy‐storage systems.  相似文献   

2.
Energy‐storing functional photovoltaics, which can simultaneously harvest and store solar energy, are proposed as promising next‐generation multifunction energy systems. For the extension of conventional organic photovoltaics (OPVs), electrochromic supercapacitors (ECSs) are monolithically integrated with semitransparent (ST) quaternary blend‐based OPVs (ST Q‐OPVs) to achieve compact, energy‐efficient storage with great aesthetic appeal. In particular, ST Q‐OPVs with low‐power‐consumption ECSs allow full operation, even under low‐intensity irradiance, including artificial indoor light circumstances, and thereby exhibit potential for all‐day operating energy suppliers. The prepared ST energy‐storing functional photovoltaics also serve as a backup power source for external electronic equipment (e.g., light‐emitting diodes, and sensor nodes for Internet of Things) by consuming charged power. In addition to features that include unrestricted operation under any circumstances, color tunability, feasibility of designs with various shapes, rapid charging/discharging, and real‐time indication of stored energy levels, ST energy‐storing functional photovoltaics could potentially be applied in electronic devices such as advanced smart windows or portable smart electronics.  相似文献   

3.
Smart wearable electronics that are fabricated on light‐weight fabrics or flexible substrates are considered to be of next‐generation and portable electronic device systems. Ideal wearable and portable applications not only require the device to be integrated into various fiber form factors, but also desire self‐powered system in such a way that the devices can be continuously supplied with power as well as simultaneously save the acquired energy for their portability and sustainability. Nevertheless, most of all self‐powered wearable electronics requiring both the generation of the electricity and storing of the harvested energy, which have been developed so far, have employed externally connected individual energy generation and storage fiber devices using external circuits. In this work, for the first time, a hybrid smart fiber that exhibits a spontaneous energy generation and storage process within a single fiber device that does not need any external electric circuit/connection is introduced. This is achieved through the employment of asymmetry coaxial structure in an electrolyte system of the supercapacitor that creates potential difference upon the creation of the triboelectric charges. This development in the self‐charging technology provides great opportunities to establish a new device platform in fiber/textile‐based electronics.  相似文献   

4.
Photovoltaic power‐conversion systems can harvest energy from sunlight almost perpetually whenever sunrays are accessible. Meanwhile, as indispensable energy storage units used in advanced technologies such as portable electronics, electric vehicles, and renewable/smart grids, batteries are energy‐limited closed systems and require constant recharging. Fusing these two essential technologies into a single device would create a sustainable power source. Here, it is demonstrated that such an integrated device can be realized by fusing a rear‐illuminated single‐junction perovskite solar cell with Li4Ti5O12‐LiCoO2 Li‐ion batteries, whose photocharging is enabled by an electronic converter via voltage matching. This design facilitates a straightforward monolithic stacking of the battery on the solar cell using a common metal substrate, which provides a robust mechanical isolation between the two systems while simultaneously providing an efficient electrical interconnection. This system delivers a high overall photoelectric conversion‐storage efficiency of 7.3%, outperforming previous efforts on stackable integrated architectures with organic–inorganic photovoltaics. Furthermore, converter electronics facilitates system control with battery management and maximum power point tracking, which are inevitable for efficient, safe, and reliable operation of practical loads. This work presents a significant advancement toward integrated photorechargeable energy storage systems as next‐generation power sources.  相似文献   

5.
The miniaturization of energy storage units is pivotal for the development of next‐generation portable electronic devices. Micro‐supercapacitors (MSCs) hold great potential to work as on‐chip micro‐power sources and energy storage units complementing batteries and energy harvester systems. Scalable production of supercapacitor materials with cost‐effective and high‐throughput processing methods is crucial for the widespread application of MSCs. Here, wet‐jet milling exfoliation of graphite is reported to scale up the production of graphene as a supercapacitor material. The formulation of aqueous/alcohol‐based graphene inks allows metal‐free, flexible MSCs to be screen‐printed. These MSCs exhibit areal capacitance (Careal) values up to 1.324 mF cm?2 (5.296 mF cm?2 for a single electrode), corresponding to an outstanding volumetric capacitance (Cvol) of 0.490 F cm?3 (1.961 F cm?3 for a single electrode). The screen‐printed MSCs can operate up to a power density above 20 mW cm?2 at an energy density of 0.064 µWh cm?2. The devices exhibit excellent cycling stability over charge–discharge cycling (10 000 cycles), bending cycling (100 cycles at a bending radius of 1 cm) and folding (up to angles of 180°). Moreover, ethylene vinyl acetate‐encapsulated MSCs retain their electrochemical properties after a home‐laundry cycle, providing waterproof and washable properties for prospective application in wearable electronics.  相似文献   

6.
Recent development in flexible electronics has promoted the increasing demand for their energy storage systems that will be lightweight, thin, flexible, and even foldable. Although various flexible supercapacitors recently have been successfully developed, the design and assembly of highly foldable supercapacitors have received less attention. Furthermore, foldable supercapacitors are in general operated independently with other electronics, resulting in some space and energy consumption from the external connection system. Therefore, the authors fabricate the foldable all‐solid‐state integrated devices with supercapacitor and photodetector functions in a simplified and compact configuration based on single‐walled carbon nanotube films and TiO2 nanoparticles. The integrated devices not only retain the intrinsic capacitance behavior but also show excellent sensitivity of detecting white light. More importantly, the capacitance behavior of integrated devices remains almost unchanged and the photodetector behavior is quite stable even folded by 180° due to their unique integrated configuration. Such rational design of all‐solid‐state integrated devices will pave the way for assembling energy storage devices and other electronics into highly flexible and foldable integrated devices.  相似文献   

7.
Humans live today in a high‐tech and informationalized society. With the development of the emerging electronic information age, various electronic systems are inclined to be multifunctional and miniaturized. It is urgent to develop “small and powerful” micro‐batteries with flexibility and high electrochemical performance to meet the diverse needs of microelectronic components. However, low electrochemical performance exists in traditional microenergy storage devices, which fail to satisfy the energy needs for microdevices. Here, for the first time, a planar integrated flexible rechargeable dual‐ion microbattery (DIMB) is reported, which is fabricated from an interdigital pattern of graphite as an electrode and lithium hexafluorophosphate as an electrolyte. As a microbattery, the DIMB exhibits a high reversible capacity of 56.50 mAh cm?3, and excellent cycle stability with 90% capacity retention after 300 cycles under a high working voltage. The application of DIMB in microdevices, such as light‐emitting diodes (LEDs), digital electronic game consoles, and electrochromic glasses is also investigated, fully demonstrating its “small and powerful” performance. The integrated DIMB is a high‐voltage microdevice that reaches a nonpareil discharge voltage of about 100 V and a charging capacity of 102 mAh g?1. This dual ion‐based flexible microbattery could become a promising candidate for energy storage and conversion components in next‐generation microelectronic devices and integrated electronic devices.  相似文献   

8.
Rechargeable aluminum‐ion batteries have drawn considerable attention as a new energy storage system, but their applications are still significantly impeded by critical issues such as low energy density and the lack of excellent electrolytes. Herein, a high‐energy aluminum‐manganese battery is fabricated by using a Birnessite MnO2 cathode, which can be greatly optimized by a divalence manganese ions (Mn2+) electrolyte pre‐addition strategy. The battery exhibits a remarkable energy density of 620 Wh kg?1 (based on the Birnessite MnO2 material) and a capacity retention above 320 mAh g?1 for over 65 cycles, much superior to that with no Mn2+ pre‐addition. The electrochemical reactions of the battery are scrutinized by a series of analysis techniques, indicating that the Birnessite MnO2 pristine cathode is first reduced as Mn2+ to dissolve in the electrolyte upon discharge, and AlxMn(1?x)O2 is then generated upon charge, serving as a reversible cathode active material in following cycles. This work provides new opportunities for the development of high‐performance and low‐cost aqueous aluminum‐ion batteries for prospective applications.  相似文献   

9.
All‐organic active matrix addressed displays based on electrochemical smart pixels made on flexible substrates are reported. Each individual smart pixel device combines an electrochemical transistor with an electrochromic display cell, thus resulting in a low‐voltage operating and robust display technology. Poly(3,4‐ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) served as the active material in the electrochemical smart pixels, as well as the conducting lines, of the monolithically integrated active‐matrix display. Different active‐matrix display addressing schemes have been investigated and a matrix display fill factor of 65 % was reached. This is achieved by combining a three‐terminal electrochemical transistor with an electrochromic display cell architecture, in which an additional layer of PEDOT:PSS was placed on top of the display cell counter electrode. In addition, we have evaluated different kinds of electrochromic polymer materials aiming at reaching a high color switch contrast. This work has been carried out in the light of achieving a robust display technology that is easily manufactured using a standard label printing press, which forced us to use the fewest different materials as well as avoiding exotic and complex device architectures. Together, this yields a manufacturing process of only five discrete patterning steps, which in turn promise for that the active matrix addressed displays can be manufactured on paper or plastic substrates in a roll‐to‐roll production procedure.  相似文献   

10.
The manganese dissolution leading to sharp capacity decline as well as the sluggish reaction kinetic are still major issues for manganese‐based materials as aqueous zinc‐ion batteries (ZIBs) cathodes. Here, a potassium‐ion‐stabilized and oxygen‐defect K0.8Mn8O16 is reported as a high‐energy‐density and durable cathode for neutral aqueous ZIBs. A new insight into suppressing manganese dissolution via incorporation of K+ ions to intrinsically stabilize the Mn‐based cathodes is provided. A comprehensive study suggests that oxygen defects improve electrical conductivity and open the MnO6 polyhedron walls for ion diffusion, which plays a critical role in the fast reaction kinetics and capacity improvement of K0.8Mn8O16. In addition, direct evidence for the mechanistic details of simultaneous insertion and conversion reaction based on H+‐storage mechanism is demonstrated. As expected, a significant energy output of 398 W h kg?1 (based on the mass of cathode) and an impressive durability over 1000 cycles with no obvious capacity fading are obtained. Such a high‐energy Zn‐K0.8Mn8O16 battery, as well as the basic understanding of manganese dissolution and oxygen defects may open new opportunities toward high‐performance aqueous ZIBs.  相似文献   

11.
Rechargeable aqueous zinc‐ion batteries hold great promise for potential applications in large‐scale energy storage, but the reversible insertion of bivalent Zn2+ and fast reaction kinetics remain elusive goals. Hence, a highly reversible Zn/VNx Oy battery is developed, which combines the insertion/extraction reaction and pseudo‐capacitance‐liked surface redox reaction mechanism. The energy storage is induced by a simultaneous reversible cationic (V3+ ? V2+) and anionic (N3? ? N2?) redox reaction, which are mainly responsible for the high reversibility and no structural degradation of VNxOy. As expected, a superior rate capability of 200 mA h g?1 at 30 A g?1 and high cycling stability up to 2000 cycles are achieved. This finding opens new opportunities for the design of high‐performance cathodes with fast Zn2+ reaction kinetics for advanced aqueous zinc‐ion batteries.  相似文献   

12.
Safety issues remain a major obstacle toward large‐scale applications of high‐energy lithium‐ion batteries. Embedding thermo‐responsive polymer switching materials (TRPS) into batteries is a potential strategy to prevent thermal runaway, which is a major cause of battery failures. Here, thin, flexible, highly responsive polymer nanocomposites enabled by bio‐inspired nanospiky metal (Ni) particles are reported. These unique Ni particles are synthesized by a simple aqueous reaction at gram‐scale with controlled surface morphology and composition to optimize electrical properties of the nanocomposites. The Ni particles provide TRPS films with a high room‐temperature conductivity of up to 300 S cm?1. Such TRPS composite films also have a high rate (<1 s) of resistance switching within a narrow temperature range, good reversibility upon on/off switching, and a tunable switching temperature (Ts; 75 to 170 °C) that can be achieved by tailing their compositions. The small size (≈500 nm) of Ni particles enables ready fabrication of thin and flexible TPRS films with thickness approaching 5 µm or less. These features suggest the great potential of using this new type of responsive polymer composite for more effective battery thermal regulation without sacrificing cell performance.  相似文献   

13.
Organic hybrid supercapacitors that consist of a battery electrode and a capacitive electrode show greatly improved energy density, but their power density is generally limited by the poor rate capability of battery‐type electrodes. In addition, flexible organic hybrid supercapacitors are rarely reported. To address the above issues, herein an in‐plane assembled orthorhombic Nb2O5 nanorod film anode with high‐rate Li+ intercalation to develop a flexible Li‐ion hybrid capacitor (LIC) is reported. The binder‐/additive‐free film exhibits excellent rate capability (≈73% capacity retention with the rate increased from 0.5 to 20 C) and good cycling stability (>2500 times). Kinetic analyses reveal that the high rate performance is mainly attributed to the excellent in‐plane assembly of interconnected single‐crystalline Nb2O5 nanorods on the current collector, ensuring fast electron transport, facile Li‐ion migration in the porous film, and greatly reduced ion‐diffusion length. Using such a Nb2O5 film as anode and commercial activated carbon as cathode, a flexible LIC is designed. It delivers both high gravimetric and high volumetric energy/power densities (≈95.55 Wh kg?1/5350.9 W kg?1; 6.7 mW h cm?3/374.63 mW cm?3), surpassing previous typical Li‐intercalation electrode‐based LICs. Furthermore, this LIC device still keeps good electrochemical attributes even under serious bending states (30°–180°).  相似文献   

14.
The development of wearable and large‐area fabric energy harvester and sensor has received great attention due to their promising applications in next‐generation autonomous and wearable healthcare technologies. Here, a new type of “single” thread‐based triboelectric nanogenerator (TENG) and its uses in elastically textile‐based energy harvesting and sensing have been demonstrated. The energy‐harvesting thread composed by one silicone‐rubber‐coated stainless‐steel thread can extract energy during contact with skin. With sewing the energy‐harvesting thread into a serpentine shape on an elastic textile, a highly stretchable and scalable TENG textile is realized to scavenge various kinds of human‐motion energy. The collected energy is capable to sustainably power a commercial smart watch. Moreover, the simplified single triboelectric thread can be applied in a wide range of thread‐based self‐powered and active sensing uses, including gesture sensing, human‐interactive interfaces, and human physiological signal monitoring. After integration with microcontrollers, more complicated systems, such as wireless wearable keyboards and smart beds, are demonstrated. These results show that the newly designed single‐thread‐based TENG, with the advantage of interactive, responsive, sewable, and conformal features, can meet application needs of a vast variety of fields, ranging from wearable and stretchable energy harvesters to smart cloth‐based articles.  相似文献   

15.
Forthcoming smart energy era is in strong pursuit of full‐fledged rechargeable power sources with reliable electrochemical performances and shape versatility. Here, as a naturally abundant/environmentally friendly cellulose‐mediated cell architecture strategy to address this challenging issue, a new class of hetero‐nanonet (HN) paper batteries based on 1D building blocks of cellulose nanofibrils (CNFs)/multiwall carbon nanotubes (MWNTs) is demonstrated. The HN paper batteries consist of CNF/MWNT‐intermingled heteronets embracing electrode active powders (CM electrodes) and microporous CNF separator membranes. The CNF/MWNT heteronet‐mediated material/structural uniqueness enables the construction of 3D bicontinuous electron/ion transport pathways in the CM electrodes, thus facilitating electrochemical reaction kinetics. Furthermore, the metallic current collectors‐free, CNF/MWNT heteronet architecture allows multiple stacking of CM electrodes in series, eventually leading to user‐tailored, ultrathick (i.e., high‐mass loading) electrodes far beyond those accessible with conventional battery technologies. Notably, the HN battery (multistacked LiNi0.5Mn1.5O4 (cathode)/multistacked graphite (anode)) provides exceptionally high‐energy density (=226 Wh kg?1 per cell at 400 W kg?1 per cell), which surpasses the target value (=200 Wh kg?1 at 400 W kg?1) of long‐range (=300 miles) electric vehicle batteries. In addition, the heteronet‐enabled mechanical compliance of CM electrodes, in combination with readily deformable CNF separators, allows the fabrication of paper crane batteries via origami folding technique.  相似文献   

16.
The main bottlenecks of aqueous rechargeable Ni–Zn batteries are their relatively low energy density and poor cycling stability, mainly arising from the low capacity and inferior reversibility of the current Ni‐based cathodes. Additionally, the complicated and difficult‐to‐scale preparation procedures of these cathodes are not promising for large‐scale energy storage. Here, a facile and cost‐effective ultrasonic‐assisted strategy is developed to efficiently activate commercial Ni foam as a robust cathode for a high‐energy and stable aqueous rechargeable Ni–Zn battery. 3D Ni@NiO core–shell electrode with remarkably boosted reactivity and an area of 300 cm2 is readily obtained by this ultrasonic‐assisted activation method (denoted as SANF). Benefiting from the in situ formation of electrochemically active NiO and porous 3D structure with a large surface area, the as‐fabricated SANF//Zn battery presents ultrahigh capacity (0.422 mA h cm?2) and excellent cycling durability (92.5% after 1800 cycles). Moreover, this aqueous rechargeable SANF//Zn battery achieves an impressive energy density of 15.1 mW h cm?3 (0.754 mW h cm?2) and a peak power density of 1392 mW cm?3, outperforming most reported aqueous rechargeable energy‐storage devices. These findings may provide valuable insights into designing large‐scale and high‐performance 3D electrodes for aqueous rechargeable batteries.  相似文献   

17.
Sodium–air (Na–O2) batteries have recently developed as a high theoretical energy density energy storage and conversion system. In particular, Na–O2 batteries with superoxide as the discharge product have a very high round‐trip energy efficiency over lithium–air batteries due to their significantly reduced charging overpotential. However, Na–O2 batteries yet suffer from limited cycling lives because of the formation and incomplete removal of side products during oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes, while the mechanism of these processes is still not fully understood. Herein, a detailed investigation on tracking the decomposition pathway of cubic‐shaped micrometer‐sized NaO2 discharge products in Na–O2 batteries with carbon‐based air electrodes is reported. A detailed electrochemical charging mechanism is revealed during the charging process. The evolution of the chemical compositions of the discharge/side products in air electrode during charging is also verified by synchrotron‐based X‐ray absorption spectroscopy experiments. The formation of these intermediate phases other than NaO2 during the charging process results in high overpotentials. These new findings can contribute to a better understanding and the rational design of future Na–O2 batteries.  相似文献   

18.
A novel flexible hybrid battery–supercapacitor device is proposed consisting of high specific surface area electrodes paired with an electrolyte, which contains a redox species that can exist in more than two oxidation states. The two initially equal half‐cells of the device consist of a reduced graphene oxide hydrogel which encapsulates vanadium ions, synthesized with a single‐step method. During charge, the oxidation state of the vanadium ions changes, resulting in two half‐cells with different potentials which considerably increases the energy density. The achieved maximum capacity of more than 225 mAh g?1 is roughly eight times higher than that of comparable graphene hydrogel supercapacitors without vanadium content, but the potentiostatic charging time is only double. Operated as a supercapacitor, it retains 95% of the initial capacitance over 1000 cycles. As battery, the losses are more significant, retaining around 50% of the initial capacity. However, these losses during battery operation can be almost entirely restored by electric measures. The vanadium ion addition also improves the self‐discharge characteristics of the device. Moreover, the self‐discharge does not permanently damage the hybrid device since both half‐cells initially consist of the same vanadium graphene hydrogel and discharging resets it to initial conditions.  相似文献   

19.
Sodium‐based dual‐ion batteries (SDIBs) have attracted much attention for their advantages of high operating voltage, environmental friendliness, and especially low cost. However, the electrochemical performances of the reported SDIBs are still unsatisfied due to the decomposition problem of traditional liquid electrolyte under high working voltage. Development of quasi‐solid‐state electrolytes (QSSEs) with excellent electrochemical stability at high voltage is a possible means to improve their properties. In this work, a flexible SDIB based on a QSSE, consisting of poly(vinylidene ?uoride‐co‐hexa?uoropropylene) (PVDF‐HFP) three‐dimensionally cross‐linked with Al2O3 nanoparticles, which exhibits a porous 3D structure with dramatically enhanced ionic conductivity up to ≈1.3 × 10?3 S cm?1, facilitating fast ionic migration of both anions and cations, is reported. This quasi‐state SDIB exhibits a high specific capacity of 96.8 mAh g?1 at a current rate of 5 C and excellent cycling stability with a capacity retention of 97.5% after 600 cycles at 5 C, which is the best performance of the SDIBs. Moreover, excellent flexibility and a wide working temperature range (?20 to 70 °C) have been realized for this battery, suggesting its potential for high‐performance flexible energy storage applications.  相似文献   

20.
Li–CO2 batteries are regarded as a promising candidate for the next‐generation high‐performance electrochemical energy storage system owing to their ultrahigh theoretical energy density and environmentally friendly CO2 fixation ability. Until now, the majority of reported catalysts for Li–CO2 batteries are in the powder state. Thus, the air electrodes are produced in 2D rigid bulk structure and their electrochemical properties are negatively influenced by binder. The nondeformable feature and unsatisfactory performance of the cathode have already become the main obstacles that hinder Li–CO2 batteries toward ubiquity for wearable electronics. In this work, for the first time, a flexible hybrid fiber is reported comprising highly surface‐wrinkled and N‐doped carbon nanotube (CNT) networks anchored on metal wire as the cathode integrated with high performance and high flexibility for fiber‐shaped Li–CO2 battery. It exhibits a large discharge capacity as high as 9292.3 mAh g?1, an improved cycling performance of 45 cycles, and a decent rate capability. A quasi‐solid‐state flexible fiber‐shaped Li–CO2 battery is constructed to illustrate the advantages on mechanical flexibility of this fiber‐shaped cathode. Experiments and theoretical simulations prove that those doped pyridinic nitrogen atoms play a critical role in facilitating the kinetics of CO2 reduction and evolution reaction, thereby enabling distinctly enhanced electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号