首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to develop a novel catalyst system that has excellent olefin reduction ability for FCC gasoline without loss in research octane number (RON), different catalysts supported on single- and binary-zeolite carriers consisting of Hβ or/and HZSM-5 were prepared and their catalytic performances for FCC gasoline upgrading were assessed in the present investigation. Acidity measurements by pyridine-adsorbed Fourier transformed infrared spectroscopy (FTIR) showed that hydroisomerization and aromatization activities were closely related to the density of acid sites and the ratios of medium Lewis acidity and strong Br?nsted acidity to total acidity. Compared with the single HZSM-5 supported catalyst, the single Hβ supported catalyst was found to have much better olefin reduction performance, but the product RON still suffered from a loss of 1.6. Compared to the single-zeolite supported catalysts, the binary-zeolite Hβ/HZSM-5 supported catalysts with the mass ratio of Hβ to HZSM-5 at 6.6 offered much more stable activity and selectivity to arene, which played an important role in preserving gasoline RON.  相似文献   

2.
This article describes a novel citric acid treatment method for realuminating dealuminated HZSM-5 zeolite and its application in enhancing the performance of the zeolite derived FCC gasoline hydro-upgrading catalysts. A series of modified HZSM-5 zeolites were prepared by streaming and/or acid treatments and the influences of the different modification methods on the acidity, pore structure and catalytic performance of the modified HZSM-5 zeolite supported catalysts were compared in the present investigation. The results showed that compared with the single HCl or citric acid treatment, the steaming treatment, and the steaming/HCl treatments, the citric acid treatment after steaming exclusively increased the amount of framework Al species due to its realumination effect on the steamed HZSM-5 zeolite. This realumination effect of the citric acid treatment could optimize the ratio of framework Al to extra-framework Al in the steamed HZSM-5 zeolite and thus greatly improve the acidity distribution and pore structure of the corresponding catalyst. The catalytic performance assessments of the different zeolite supported catalysts for FCC gasoline hydro-upgrading revealed that the catalyst supported on the steaming/citric acid treated HZSM-5 zeolite had balanced initial and long-term activities in hydrodesulfurization, hydroisomerization and aromatization, high liquid yield and improved gasoline road octane number. The superior catalytic performance of the catalyst could be closely related to its suitable ratio of framework Al to extra-framework Al achieved by the combinational use of the steaming dealumination and the citric acid realumination, fully demonstrating the effectiveness of the steaming and citric acid treatments in optimizing the physicochemical properties and catalytic performance of HZSM-5 zeolite supported catalysts.  相似文献   

3.
Yu Fan  Duo Lei  Gang Shi  Xiaojun Bao   《Catalysis Today》2006,114(4):388-396
This article describes the synthesis, characterization and application of a novel aluminosilicate/silicoaluminophosphate composite zeolite ZSM-5/SAPO-11. The composite was synthesized by the in situ overgrowth of SAPO-11 on ZSM-5 and was characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformed infrared (FT-IR) spectrometry, N2 adsorption and infrared spectroscopy of adsorbed pyridine. The results were compared with those of the mechanical mixture composed of individual ZSM-5 and SAPO-11. In the mechanical mixture, the ZSM-5 phase was morphologically separate from the SAPO-11 phase, while the ZSM-5/SAPO-11 composite existed in a form of a core-shell structure, with the ZSM-5 phase as the core and the SAPO-11 phase as the shell. Compared with the mechanical mixture, the composite had more mesopores and moderate acidity distribution, which could accelerate the diffusion of substances and enhance the synergetic effect between Brönsted and Lewis acids. The comparison of the catalytic performances of the mechanical mixture and the composite-based Ni–Mo catalysts for FCC gasoline hydro-upgrading showed that, due to the above advantages of the composite, the corresponding catalyst yielded improved gasoline research octane number, high liquid yield, good desulfurization activity and lower coke amount and thus could be considered as a potential catalyst system for hydro-upgrading FCC gasoline.  相似文献   

4.
This article describes a novel non-hydrogenating FCC gasoline upgrading catalyst system consisting of a kaolin/γ-Al2O3 binary-matrix and an active component zeolite HZSM-5. Different catalysts made from the different combinations of HZSM-5 with the three matrices (two kaolins and γ-Al2O3) or their binary mixtures were prepared and their catalytic performances were assessed in a continuously flowing fixed-bed reactor using FCC gasoline as feedstock. The results showed that compared with the single-matrix based HZSM-5 catalysts, the binary-matrix based HZSM-5 catalysts had much better catalytic performance. The characterization results of the acidity, specific area and pore structure properties of the catalysts revealed that the synergisms between the matrices and HZSM-5 in the acidity and pore distribution of the binary-matrix based catalysts accounted for their improved catalytic performance. Our results demonstrated that the non-hydrogenating catalyst system developed in the present investigation can convert olefins in FCC gasoline into aromatics that have higher research octane number (RON) and thus has potential application for FCC gasoline upgrading because of its excellent olefin reduction ability and RON preservability.  相似文献   

5.
对HZSM-5及Zn改性HZSM-5、SAPO-34、MCM-41和磷钨酸负载MCM-41分子筛催化剂进行表征,评价固定床反应器中催化异丙醇脱水反应.Zn改性HZSM-5可有效调节催化剂的酸性,提高催化剂选择性,酸性较弱的SAPO-34与Al2O3质量比为5:1混合组成的SAPO-34催化剂和MCM-41分子筛也表现出...  相似文献   

6.
以甲醇制烯烃(MTO)与催化裂化(FCC)汽油降烯烃组合反应工艺为研究目标,采用分子筛催化剂,在小型固定床微型反应装置,研究MTO反应、汽油降烯烃反应以及甲醇与汽油混合炼制反应,比较了典型酸性分子筛催化剂的催化性能。结果表明,组合反应过程呈现出非稳态特征,小分子烯烃具有自催化现象,导致产物组成分布随反应时间显著变化。NH3-TPD分析表明,具有中强酸与强酸相结合分布特点的催化剂适合于反应过程的协同催化作用要求。适宜的反应条件为:以SAPO-34分子筛作催化剂,反应温度400 ℃,甲醇混炼比15%,反应时间30 min。该条件能同时较好满足MTO和FCC汽油改质要求,产物汽油中烯烃含量较FCC汽油中的含量下降50%,并可获得较高的小分子烯烃产率,实现MTO转化。  相似文献   

7.
This article describes a novel modification method consisting of steaming and subsequent citric acid leaching to finely tune acidity and pore structure of HZSM-5 zeolite and thereby to enhance the on-stream stability of the zeolite derived fluid catalytic cracking (FCC) gasoline hydro-upgrading catalyst. A series of dealuminated HZSM-5 zeolites and their derived catalysts were prepared and characterized by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), 27Al MAS NMR, nitrogen adsorption, temperature programmed desorption of ammonium (NH3-TPD) and infrared (IR) spectroscopy of chemisorbed pyridine. The results showed that the citric acid leaching could preferentially remove the extra-framework Al (EFAl) species formed by steaming treatment and thus reopen the EFAl-blocked pore channels of the steamed zeolite. The steaming treatment at a suitable temperature and subsequent citric acid leaching not only decreased the strength of acid sites to a desirable degree but also increased the ratio of medium and strong Lewis acidity to medium and strong Brönsted acidity, both of which conferred the resulting catalyst with superior selectivity to aromatics, good hydroisomerization activity and gasoline research octane number (RON) preservability, as well as enhanced on-stream stability. The results fully demonstrated that the treatments by steaming and followed citric acid leaching can serve as an important method for adjusting the physicochemical properties of HZSM-5 zeolite.  相似文献   

8.
Jian Li  Yisheng Tan  Yizhuo Han 《Fuel》2010,89(11):3510-3516
Zeolite HZSM-5 is known to be active for the catalytic conversion of methanol into hydrocarbons, but its strong acidity and narrow channels may lead to high selectivity to aromatics, thus decreasing the quality of synthesized gasoline. In this work, an HZSM-5/MnAPO-11 composite was prepared via hydrothermal synthesis, and the catalytic synthesis of high-octane gasoline from syngas was studied in flow-type fixed-bed reactors. The catalysts were characterized employing X-ray diffraction (XRD), N2 adsorption-desorption, ammonia temperature-programmed desorption (NH3-TPD), scanning electron microscopy (SEM), energy-diffusive X-ray spectroscopy (EDS), atomic absorption spectrophotometry (AAS), and Fourier transformed infrared spectroscopy (FT-IR). Compared with HZSM-5 and a mechanical mixture of HZSM-5 and MnAPO-11, the HZSM-5/MnAPO-11 composite showed the highest gasoline yield and iso-paraffin selectivity due to the presence of more mesopores and moderate acid sites. The results provide new perspectives on the synthesis and application of composite molecular sieves in the production of gasoline.  相似文献   

9.
Chloromethane transformations were carried out over zeolites and SAPOs and the conversion and product distribution differed from the porous structure and acidity of the catalysts. Chloromethane was mainly transferred to higher hydrocarbons in gasoline range over most of zeolite catalysts, while SAPOs molecular sieves, SAPO-34 and SAPO-5, showed high selectivity for light olefins production, such as ethylene, propylene and butenes. TG analysis was used to study the coke formation during the transformation and the acid difference of the catalysts was evidenced by Temperature programmed desorption of ammonia. HZSM-5, with high activity and less coke formation, was proved to be a potential catalyst for hydrocarbons production from chloromethane conversion. It is of particular interest that SAPO-34 gave an excellent performance in light olefins production from chloromethane transformation, which may be attributed to the shape selectivity and medium strong acidity of SAPO-34.  相似文献   

10.
分子筛催化剂上催化裂化汽油掺混甲醇的改质研究   总被引:1,自引:1,他引:0  
以实现甲醇制取低碳烯烃转化工艺和FCC汽油降烯烃工艺的有效组合为目的,在固定床微型反应装置上,使用SAPO-34、ZSM-5、DOCO以及分子筛组合催化剂,对FCC汽油掺混甲醇改质进行了研究。主要对反应温度、空速和混炼比等影响因素进行了考察。结果表明,SAPO-34分子筛上甲醇制取低碳烯烃效果较好,高烯烃含量汽油在SAPO-34分子筛上的氢转移和芳构化效果显著,ZSM-5分子筛上的芳构化反应效果和DOCO的异构化反应效果较显著,甲醇转化与汽油转化反应间的相互协同作用,既有利于甲醇转化成低碳烯烃又能提高汽油降烯烃转化深度。适宜的混炼条件:反应温度400℃,m(甲醇):m(汽油)=0.05,空速3h~(-1),组合催化剂上,产物汽油中烯烃含量较FCC粗汽油下降23%以上。  相似文献   

11.
对HZSM-5分子筛改性是提高甲醇制汽油反应催化性能的有效方式,分别用非金属、稀土金属及水热处理对HZSM-5分子筛催化剂进行改性,考察改性方法对HZSM-5分子筛酸性、孔径和比表面积等性质的影响,同时对改性HZSM-5分子筛催化剂催化甲醇制汽油的汽油收率和芳烃含量等指标进行比较。结果表明,经La改性的催化剂可明显提高汽油收率,水热处理的催化剂反应产物汽油中的均四甲苯含量大幅增加。改性催化剂对反应的影响可一定程度验证相关理论。  相似文献   

12.
Nanoscale HZSM-5 zeolite was hydrothermally treated with ammonia water at different temperatures and then loaded with La2O3 and ZnO. The parent and the modified nanoscale HZSM-5 catalysts were characterized by SEM, NH3-TPD, IR and XRF. The performance of the modified HZSM-5 catalysts for FCC gasoline upgrading was evaluated in a fixed bed reactor in the presence of hydrogen. The results indicated that the modified catalyst which was hydrothermally treated at 400 °C exhibited excellent aromatization activity, isomerization activity and higher ability of reducing olefin content in FCC gasoline. Under the given reaction conditions, the olefin content in FCC gasoline could be decreased from 49.6 to 8.1 vol.%. The catalytic performance of the modified nanoscale ZSM-5 catalyst hardly changed within 300 h time on stream, and the research octane number (RON) of gasoline was preserved.  相似文献   

13.
王昌东  郝凤林  王强 《当代化工》2011,40(7):666-668
用空气处理的ZSM-5型分子筛作为载体,以硝酸铜为活性组分,制备一种FCC汽油吸附脱硫催化剂。改变反应器温度、空气处理温度以及空气流速制备一系列载体,在载体上负载不同质量分数的硝酸铜溶液,得到催化剂。利用制备的催化剂在微型反应装置中进行FCC汽油脱硫实验,考察温度、空速对催化剂吸附脱硫活性的影响。结果表明:对ZSM-5型分子筛的处理温度为600℃处理时间为7 h,活性组分的质量分数为10.0%,吸脱附床层温度为30℃,常压,空速为0.3 h-1时,催化剂具有较好的催化活性,吸附脱硫率78.1%。  相似文献   

14.
水热处理磷改性HZSM-5催化剂的研究   总被引:1,自引:1,他引:0  
施岩  王海彦  李剑 《工业催化》2008,16(5):24-27
以催化裂化轻汽油馏分为原料,以水热处理磷改性HZSM-5为催化剂,在小型固定床反应装置上考察了水热处理改性方法制备催化剂的催化裂解性能。通过对HZSM-5分子筛催化剂水热处理,调变其酸性,达到多产丙烯的目的。确定催化剂改性最佳条件为:水热处理温度650 ℃,处理时间2 h,处理空速2 h-1。HZSM-5水热处理后,明显改善催化剂的水热稳定性和活性,提高丙烯选择性。  相似文献   

15.

Abstract  

HZSM-5/SAPO-34 zeolite composites were prepared by hydrothermal synthesis (ZS-HS) and mechanical mixture (ZS-MM), respectively. ZS-HS showed higher propylene yield and better catalytic stability in ethanol conversion than ZS-MM as well as HZSM-5 and SAPO-34. In case of ZS-HS, SAPO-34 at least partially overlapped on HZSM-5, which resulted in the interfacial interaction of HZSM-5 and SAPO-34. Such interaction significantly modified the texture and the acidity of ZS-HS, which in turn affected its catalytic reactivity. ZS-HS showed the higher apparent formation rate of propylene, due to its moderate concentration and strength distribution of acid sites. Propylene, ethylene and butylenes might produce through the parallel reaction pathways and the common intermediate on ZS-HS.  相似文献   

16.
催化裂化汽油在多元沸石基催化剂上加氢改质研究   总被引:1,自引:0,他引:1  
采用浸渍法分别制备了以丝光沸石(HM)、Hβ和HZSM-5及其组合为载体的沸石基Ni-Mo-P催化剂,考察了载体组成对催化裂化汽油加氢改质反应性能的影响。结果表明,由适宜比例的三者组合得到的沸石基Ni-Mo-P催化剂具有良好的加氢异构化、脱硫、芳构化活性及稳定性,可在催化裂化汽油脱硫降烯烃的同时保证产品的辛烷值不降低。考察了工艺条件对三元沸石基Ni-Mo-P催化剂反应性能的影响。在温度300 ℃、氢油体积比350、液相体积空速2.5 h-1和反应压力1.5 MPa反应条件下,催化裂化汽油异构烷烃收率、芳烃收率、脱硫率及液相收率分别达41.9%、31.7%、51.0%和98.3% 。  相似文献   

17.
用球磨共混法制备了磷钨杂多酸负载于HY、Hβ和HZSM-5上的双组元催化剂,分别考察了磷钨杂多酸(HPWA)、HY、Hβ和HZSM-5单组元催化剂及其HPWA与分子筛负载的双组元催化剂对轻汽油与甲醇醚化的反应性能。在自生压力反应釜进行反应的实验结果表明,负载质量分数40%HPWA的HPWA/Hβ具有优良的反应性能。对40%HPWA/Hβ催化剂进行反应条件优化实验结果表明,该催化剂的最优反应条件为:剂油质量比1∶12,反应温度90 ℃,醇油质量比1∶3,甲醇含水量4%,反应时间2 h。在此条件下,烯烃转化率55.78%,醚化选择性64.00%,醚收率35.69%。  相似文献   

18.
田海锋  姚璐  高佳良  查飞  郭效军 《化工学报》2018,69(7):3009-3017
催化剂的形态及晶粒的组装对其催化性能有重要影响,采用硅烷化处理对Mo基催化剂表面酸性进行毒化制备了核壳型(Mo基催化剂@Silicalite-1)复合材料;采用四丙基氢氧化铵或正丁胺有机弱碱对Mo/HZSM-5进行刻蚀,然后经过脱硅再结晶分别制备了表面富硅型中空结构Mo/HZSM-5微球和表面富硅、核内含有多级孔道的Mo/HZSM-5微球。采用XRD、TEM、N2等温吸脱附和NH3-TPD对催化剂结构进行表征,并考察了三种不同后处理方法对Mo基催化剂在甲烷无氧芳构化反应中催化性能的影响。硅烷化和有机碱处理均能够调变Mo/HZSM-5催化剂的表面酸性,而经有机碱处理以后,催化剂结晶度、介孔比表面积和孔容均具有不同程度的增加,三种不同后处理方法均能改善Mo/HZSM-5催化剂的反应稳定性,对产物的分布也产生了显著影响。  相似文献   

19.
催化裂化汽油馏分芳构化降烯烃研究   总被引:6,自引:1,他引:6  
以75~120 ℃的FCC汽油馏分为原料,在连续固定床反应器上考察了Zn P/HZSM-5催化剂的芳构化反应性能,探讨了工艺条件对芳构化反应的影响以及工业化的可行性。结果表明,Zn-P/HZSM-5催化剂具有很高的活性、稳定性和芳烃选择性。在温度430 ℃、压力0.1 MPa、空速1 h-1的反应条件下,得到了烯烃含量低、芳烃和异构烷烃较协调的汽油调合产品。  相似文献   

20.
The purpose of this study is to increase acrolein yield and capability of coking resistance in the reaction of glycerol dehydration to acrolein by assembling metal phosphate supported on HZSM-5 catalyst.The as-prepared catalysts were characterized by XRD,SEM,EDS,BET,NH3-TPD,CO2-TPD and Py-IR techniques.It was found that metal phosphate species were incorporated into the porous structure of HZSM-5 zeolites,thus influencing the surface and textural physico-chemical properties of the supporters.The alkaline-treated HZSM-5 catalyst promoted the dispersion of phosphate species on the carriers.Moreover,the amount of strong aridity was tremendously improved by adding the different metal hydrophosphates and the catalysts show high catalytic activity.In this present work,the Sn1/4H2PO4/HZSM-5 catalyst exhibited good performance in the catalytic activity and coking resistant ability,which resulted in a high acrolein yield of 83% initially and acrolein yield of 68% after 30 h.The aridity,especially the ratio of strong to weak acid,plays an important role in promoting acrolein yield and stability simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号