首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study examined the catalytic effects of natural Australian (AL) and Brazilian (BL) limonites used in hydrocracking Brazilian Marlim vacuum residue (ML-VR). The catalytic behavior of the limonites was compared with a conventional NiO-MoO3-Al2O3 (NiMo) catalyst. Diphenylmethane (DPM) and 1-methylnaphthalene (1-MN) were used as standards. The order in which coke and gas formation were suppressed during hydrocracking of ML-VR was NiMo>BL>AL, which is the same order as for the hydrogenation activity observed with the standard compounds. By contrast, the limonite catalysts exhibited relatively higher conversions and distillate yields in ML-VR hydrocracking than did the NiMo catalyst with the order of conversion and distillate yield (yield of the fraction with boiling point of 540 °C) being AL>BL>NiMo, which is the same order obtained for catalytic cracking of the two standards. Coke formation was effectively suppressed at high hydrogen pressures. The limonite catalysts showed lower activities for nitrogen and sulfur removal than did NiMo, but both proved to have a larger activity for nickel removal.  相似文献   

2.
Bio gas oils with improved low temperature properties   总被引:2,自引:0,他引:2  
During hydrodeoxygenation of triglycerides to motor fuel the isomerization reactions have an important role, since the cold flow properties of the product are improved significantly by increase of isoparaffin content of the product in gas oil boiling range. Accordingly, the aim of our research program was to select and investigate suitable catalyst(s) for producing relatively high isoparaffin containing product for a long time of preserved activity. Both not-presulphided CoMo/Al2O3 and NiMo/Al2O3 catalysts have isomerization activity, however, in the case of CoMo/Al2O3 catalyst triglyceride conversion is higher by 25.1-30.5 abs%, as well as yields by 24.2-24.6 abs% corresponding by 0.18-0.33 higher i-/n-paraffin ratio than for NiMo/Al2O3 under favorable conditions. Thereby products with more advantageous cold flow properties can be produced on CoMo/Al2O3 catalyst.  相似文献   

3.
D. Ferdous  J. Adjaye 《Fuel》2006,85(9):1286-1297
A detailed experimental study was performed in a trickle-bed reactor using bitumen derived gas oil. The objective of this work was to compare the activity of NiMo/Al2O3 catalyst containing boron or phosphorus for the hydrotreating and mild hydrocracking of bitumen derived gas oil. Experiments were performed at the temperature and LHSV of 340-420 °C and 0.5-2 h−1, respectively, using NiMo/Al2O3 catalysts containing 1.7 wt% boron or 2.7 wt% phosphorus. In the temperature range of 340-390 °C, higher nitrogen conversion was observed from boron containing catalyst than that from phosphorus containing catalyst whereas in the same temperature range, phosphorus containing catalyst gave higher relative removal of sulfur than boron containing catalyst. Phosphorus containing catalyst showed excellent hydrocracking and mild hydrocracking activities at all operating conditions. Higher naphtha yield and selectivity were obtained using phosphorus containing catalyst at all operating conditions. Maximum gasoline selectivity of ∼45 wt% was obtained at the temperature, pressure, and LHSV of 400 °C, 9.4 MPa and 0.5 h−1, respectively, using catalyst containing 2.7 wt% phosphorus.  相似文献   

4.
A set of pillared clay catalysts based on montmorillonite (a natural clay) and laponite (a synthetic clay) have been prepared. The new catalysts have been pillared with tin, chromium and aluminium pillars as well as layered double hydroxides based on polyoxo-vanadate and -molybdate. The activities of these novel catalysts have been compared with that of a commercial supported NiMo/Al2O3 catalyst and with sulphided Mo(CO)6 during short (10 min) contact runs. A coal extract sample was reacted at 440 °C in a microbomb reactor in the presence of tetralin and 19 MPa hydrogen. Products were compared by size exclusion chromatography, using NMP as eluent, and by UV-fluorescence. Boiling point distributions of hydrocracked products were determined by a TGA based method; ‘conversions’ were defined as the decrease in the fraction of material with boiling points >450 °C during the reaction. Previous work at 440 °C and 19 MPa H2 indicates extensive thermal (pyrolytic) cracking during the first 10 min; in the absence of catalyst recombination reactions rapidly take over. Results with several of the new catalysts did not show any improvement compared to the absence of catalyst with ∼39% conversion. The highest conversion (∼70%) was obtained with the Sn laponite pillared clay. The Cr montmorillonite catalyst, pre-calcined at 500 °C, gave the greatest overall shift to smaller molecular masses even though the observed conversion of >450 °C boiling material was relatively poor.  相似文献   

5.
Carolina Leyva  Mohan S. Rana 《Fuel》2007,86(9):1232-1239
CoMo and NiMo supported Al2O3 catalysts have been investigated for hydrotreating of model molecule as well as industrial feedstock. Activity studies were carried out for thiophene and SRGO hydrodesulfurization (HDS) in an atmospheric pressure and batch reactor respectively. These activities on sulfided catalysts were evaluated as a function of promoter content [M/(M + Mo) = 0.30, 0.34, 0.39; M = Co or Ni] using fixed (ca. 8 wt.%) molybdenum content. The promoted catalysts were characterized by textural properties, XRD, and temperature programmed reduction (TPR). TPR spectra of the Co and Ni promoter catalysts showed that Ni promotes the easy reduction of Mo species compared with Co. With the variation of promoter content NiMo catalyst was found to be superior to CoMo catalyst for gas oil HDS, while at low-promoter content the opposite trend was observed for HDS of thiophene. The behavior was attributed to the several reaction mechanisms involved for gas oil HDS. A nice relationship was obtained for hydrodesulfurized gas oil refractive index (RI) and aromatic content, which corresponds to the Ni hydrogenation property.  相似文献   

6.
CuO-CoO-Cr2O3 mixed with MFI Zeolite (Si/Al = 35) prepared by co-precipitation was used for synthesis gas conversion to long chain hydrocarbon fuel. CuO-CoO-Cr2O3 catalyst was prepared by co-precipitation method using citric acid as complexant with physicochemical characterization by BET, TPR, TGA, XRD, H2-chemisorptions, SEM and TEM techniques. The conversion experiments were carried out in a fixed bed reactor, with different temperatures (225-325 °C), gas hourly space velocity (457 to 850 h−1) and pressure (28-38 atm). The key products of the reaction were analyzed by gas chromatography mass spectroscopy (GC-MS). Significantly high yields of liquid aromatic hydrocarbon products were obtained over this catalyst. Higher temperature and pressure favored the CO conversion and formation of these liquid (C5-C15) hydrocarbons. Higher selectivity of C5 + hydrocarbons observed at lower H2/CO ratio and GHSV of the feed gas. On the other hand high yields of methane resulted, with a decrease in C5+ to C11+ fractions at lower GHSV. Addition of MFI Zeolite (Si/Al = 35) to catalyst CuO-CoO-Cr2O3 resulted a high conversion of CO-hydrogenation, which may be due to its large surface area and small particle size creating more active sites. The homogeneity of various components was also helpful to enhance the synergistic effect of Co promoters.  相似文献   

7.
The synthesis of two NiMo/Al2O3 catalysts by the supercritical carbon dioxide/methanol deposition (NiMo‐SCF) and the conventional method of wet coimpregnation (NiMo‐IMP) were conducted. The results of the physical and chemical characterization techniques (adsorption–desorption of nitrogen, oxygen chemisorption, XRD, TPR, TEM, and EDAX) for the NiMo‐SCF and NiMo‐IMP demonstrated high and uniform dispersed deposition of Ni and Mo on the Al2O3 support for the newly developed catalyst. The hydrodesulfurization (HDS) of fuel model compound, dibenzothiophene, was used in the evaluation of the NiMo‐SCF catalyst vs. the commercial catalyst (NiMo‐COM). Higher conversion for the NiMo‐SCF catalyst was obtained. The kinetic analysis of the reaction data was carried out to calculate the reaction rate constant of the synthesized and commercial catalysts in the temperature rang of 543–603 K. Analysis of the experimental data using Arrhenius' law resulted in the calculation of frequency factor and activation energy of the HDS for the two catalysts. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

8.
Catalytic coprocessing of low density polyethylene (LDPE) with coal and heavy petroleum resid was investigated using four different catalysts that included both hydrotreating and hydrocracking catalysts. Reaction systems that were evaluated included LDPE alone; LDPE with coal; and LDPE, coal, and resid. The catalysts used were NiMo/Al2O3, a hydrotreating catalyst with some hydrocracking activity, and the hydrocracking catalysts Zeolyst 753, NiMo/zeolite, and HZSM-5. These catalysts were reacted individually or in combinations of 10 wt.% of each hydrocracking catalyst in NiMo/Al2O3. The catalytic reactions were performed at two temperatures, 400 and 430°C, using 1 wt.% of each catalyst or a combination of catalysts on a total feed basis. The effects of the different catalysts on the reaction products were measured in terms of solvent fractionation and total boiling point distribution. Reactions at the higher reaction temperature of 430°C resulted in substantially higher conversion and production of lighter products than the reactions at 400°C. The LDPE reaction system was sensitive to the catalyst type, and yielded increased conversion and lighter products when Zeolyst 753 and NiMo/zeolite were used. By contrast, the conversion and product slate obtained from the LDPE and coal systems were low and showed no effect due to the different types of catalyst. Introduction of resid to the LDPE/coal system increased the reactivity of the system and allowed the catalysts to have a larger effect. The hydrocracking catalysts were the most active in producing more conversion and hexane soluble material. Comparison of the effect of increasing the reaction time up to 5 h with 1 wt.% catalyst loading to the effect of increasing the catalyst loading from 1 wt.% to 10 wt.% for a reaction time of 1 h showed that increased reaction time was much more effective than catalyst loading in converting the solid LDPE to liquid reaction products.  相似文献   

9.
Microwave-assisted catalytic pyrolysis was carried out for upgrading of Athabasca bitumen. The bitumen can be heated to the desired target temperature (430 °C) for pyrolysis with silicon carbide (SiC), a heating element, in approximately 10 min under microwave irradiation. However, the pyrolysis with SiC only resulted in heavy and viscous liquid product having an API gravity of 17.14°. Addition of Nickel and Molybdenum nanoparticles as catalysts enhanced the pyrolysis performance in terms of liquid yield and quality. In the pyrolysis with Mo nanoparticles, the yield and the API gravity of the liquid product were 72.0 wt% and 20.98°, respectively. However, the separate existence of nanoparticles and SiC in the reactor and the recovery problem of nanoparticles, might limit their application in microwave-assisted pyrolysis. In order to prepare a composite with microwave susceptibility and catalytic activity in one body, transition metals were loaded on alumina coated SiC. When it is compared to the direct application of metal nanoparticles to the pyrolysis of bitumen, the NiMo/Al2O3/SiC catalyst showed enhanced catalytic performance. The API gravity and sulfur contents of the liquid products from the pyrolysis with NiMo/Al2O3/SiC were 22.42° and 2.84 wt%, respectively.  相似文献   

10.
A miniaturized methanol steam reformer with a serpentine type of micro-channels was developed based on poly-dimethylsiloxane (PDMS) material. This way of fabricating micro-hydrogen generator is very simple and inexpensive. The volume of a PDMS micro-reformer is less than 10 cm3. The catalyst used was a commercial Cu/ZnO/Al2O3 reforming catalyst from Johnson Matthey. The Cu/ZnO/Al2O3 reforming catalyst particles of mean diameter 50-70 μm was packed into the micro-channels by injecting water based suspension of catalyst particles at the inlet point. The miniaturized PDMS micro-reformer was operated successfully in the operating temperatures of 180-240 °C and 15%-75% molar methanol conversion was achieved in this temperature range for WHSV of 2.1-4.2 h−1. It was not possible to operate the micro-reformer made by pure PDMS at temperature beyond 240 °C. Hybrid type of micro-reformer was fabricated by mixing PDMS and silica powder which allowed the operating temperature around 300 °C. The complete conversion (99.5%) of methanol was achieved at 280 °C in this case. The maximum reformate gas flow rate was 30 ml/min which can produce 1 W power at 0.6 V assuming hydrogen utilization of 60%.  相似文献   

11.
L. Li  Z.H. Zhu  G.Q. Lu  S.Z. Qiao 《Carbon》2007,45(1):11-20
CMK-3 carbon was used as a catalyst support for Ru catalyst for ammonia decomposition. The supports were treated with acid, and the effects of treatment on the properties of CMK-3 supports were studied by N2 adsorption, XRD, XPS and mass titration. The chemical treatment of carbon support cause significant changes in carbon surface chemistry and in turn had significant effects on both catalyst dispersion and catalytic activity. It is found that the as-synthesized CMK-3 carbon is not a good catalyst support for this reaction. However, surface functional groups produced by acid treatments led to larger Ru catalyst particles, while alkali treatments made the Ru catalyst dispersion even worse due to the residue alkali or earth alkali metals. Interestingly, relatively larger Ru catalyst particles but still well dispersed in the channel of the mesoporous structures of the carbon improves NH3 conversion into H2. This is determined by the chemical reaction rate-limiting step of ammonia decomposition. The catalytic activity follows the order: Ru-K/CMK-3 > Ru-Na/CMK-3 > Ru-Ca/CMK-3 > Ru-Cl/CMK-3 > Ru-SO4/CMK-3 > Ru-PO4/CMK-3 > Ru/CMK-3 > Ru-Li/CMK-3. CMK-3 is not a good carbon catalyst support due to its amorphous structure resulting in the poor electron conductivity.  相似文献   

12.
We studied fuel gas production by means of pyrolysis and steam reforming of waste plastics for applications in solid oxide fuel cells. More specifically, we evaluated the effects of pyrolytic gasification temperature, catalyst content, steam reforming temperature, and weight hourly space velocity for a Ru catalyst used in a 60 g h− 1-scale continuous experimental apparatus, which consisted of a tank reactor for pyrolysis and a packed-bed catalytic reactor for steam reforming. Polypropylene (PP) pellets were used as a model waste plastic. Ru/γ-Al2O3 catalysts with two different Ru contents were investigated. To suppress residue formation, the optimum operating temperature of the pyrolyzer was 673 K. To ensure suppressed coke formation, sufficient carbon conversion to gaseous products, and minimized heat loss from the reactor, the optimum operating conditions for the reformer were determined to be 903 K and 0.11 g-sample g-catalyst− 1 h− 1 with a 5 wt.% Ru/γ-Al2O3 catalyst. The composition of the gas produced with the 5 wt.% catalyst was almost the same as that predicted by chemical equilibrium laws, and it was applicable for a direct hydrocarbon fuel cell.  相似文献   

13.
Unsupported NiMo sulfide catalysts were prepared from ammonium tetrathiomolybdate (ATTM) and nickel nitrate by using a hydrothermal synthesis method involving water, organic solvent and hydrogen. The activity of these catalysts in the simultaneous hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was much higher than that of the commercial NiMo/Al2O3 sulfide catalysts. Interestingly, the unsupported NiMo sulfide catalysts showed higher activity for hydrogenation (HYD) pathway than the direct desulfurization (DDS) pathway in the HDS of DBT. The same trends were observed for the HDS of 4,6-DMDBT. Morphology, surface area, pore volume and the HDS activity of unsupported NiMo sulfide catalyst depended on the catalyst preparation conditions. Higher temperature and higher H2 pressure and addition of an organic solvent were found to increase the HDS activity of unsupported NiMo sulfide catalysts for both DBT and 4,6-DMDBT HDS. Higher preparation temperature increased HYD selectivity but decreased DDS selectivity. High-resolution TEM images revealed that unsupported NiMo sulfide prepared at 375 °C shows lower number of layers in the stacks of catalyst with more curvature and shorter length of slabs compared to that prepared at 300 °C. On the other hand, higher preparation pressure increased DDS selectivity but decreased HYD selectivity for HDS of 4,6-DMDBT. HRTEM images showed higher number of layers in the stack for the NiMo sulfide prepared under an initial H2 pressure of 3.4 MPa compared to that under 2.1 MPa. The optimal Ni/(Mo + Ni) ratio for the NiMo sulfide catalyst was 0.5, higher than that for the conventional Al2O3-supported NiMo sulfide catalysts. This was attributed to the high dispersion of the active species and more active NiMoS generated. The present study also provides new insight for controlling the catalyst selectivity as well as activity by tailoring the hydrothermal preparation conditions.  相似文献   

14.
Yuying Shu 《Carbon》2005,43(7):1517-1532
A series of nickel, molybdenum, and tungsten metal phosphides deposited on a carbon black support (Ni2P/C, MoP/C, and WP/C) were synthesized by means of temperature-programmed reduction. The samples were characterized by BET surface area, CO uptake, X-ray diffraction (XRD), elemental analysis, and extended X-ray absorption fine structure (EXAFS) measurements. The activity of these catalysts was measured at 613 K and 3.1 MPa in a three-phase, packed-bed reactor for hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) with a model liquid feed containing 500 ppm sulfur as 4,6-dimethyldibenzothiophene (4,6-DMDBT), 3000 ppm sulfur as dimethyl disulfide, and 200 ppm nitrogen as quinoline. The Ni2P/C catalyst was found to exhibit the best hydroprocessing performance based on equal CO chemisorption sites (70 μmol) loaded in the reactor. An optimum Ni loading for HDS and HDN activity was found as 1.656 mmol g−1 (11.0 wt.% Ni2P) which gave an HDS conversion of 99% and an HDN conversion of 100% at a molar space velocity of 0.88 h−1. These were much higher than those of a commercial Ni-Mo-S/γ-Al2O3 catalyst which gave an HDS conversion of 68% and an HDN conversion of 94%, and a previously reported best Ni2P/SiO2 catalyst which gave an HDS conversion of 76% and an HDN conversion of 92%. The use of carbon instead of silica as a support gave rise to other differences, which included smaller particle size, higher CO uptake, lessened retention of P on the support, and reduced sulfur deposition. The stability of the 11.0 wt.% Ni2P/C catalyst was also excellent with no deactivation observed over 110 h of time on stream. The activity and stability of the Ni2P/C catalyst were affected by the phosphorous content, both reaching a maximum with an initial Ni/P ratio of 1/2. EXAFS and elemental analysis of the spent samples indicated the formation of a surface phosphosulfide phase on the Ni2P, which was beneficial for hydrotreating activity, while the bulk structure of the phosphides was maintained during the course of reaction as revealed from the XRD patterns.  相似文献   

15.
M.S. Kotwal 《Fuel》2009,88(9):1773-558
Flyash-based base catalyst was used in the transesterification of sunflower oil with methanol to methyl esters in a heterogeneous manner. Catalyst preparation variables such as, the KNO3 loading amount and calcination temperature were optimized. The catalysts were characterized by powder XRD. The catalyst prepared by loading of 5 wt.% KNO3 on flyash followed by its calcination at 773 K has exhibited maximum oil conversion (87.5 wt.%). The influence of various reaction parameters such as % catalyst loading, methanol to oil molar ratio, reaction time, temperature, reusability of the catalyst on the catalytic activity was investigated. K2O derived from KNO3 might be an essential component in the catalyst for its efficiency.  相似文献   

16.
An active iron catalyst containing sulfur for Fischer-Tropsch synthesis   总被引:2,自引:0,他引:2  
Baoshan Wu  Zhixin Zhang  Bing Zhong 《Fuel》2004,83(2):205-212
A precipitated iron catalyst containing sulfur for Fischer-Tropsch (F-T) synthesis was prepared by means of a novel method using a ferrous sulfate as precursor. Both fixed bed reactor (FBR) and continues stirred tank slurry reactor (STSR) were used to test long-term F-T reaction behaviors over the catalyst. A stability test (1600 h) in FBR showed that the catalyst was active even after 1500 h of time-on-stream with CO conversion of 78% and with C5+ hydrocarbon selectivity of 72 wt% at 250 °C, 2.0 MPa, 2.0 NL/g-cat/h, and H2/CO=2.0. The test (550 h) in STSR indicated that the catalyst exhibited relatively high activity with CO conversion of 70-76% and C5+ selectivity of 83-86 wt% in hydrocarbon products under the conditions of 260 °C, 2.0 MPa, 2.0 NL/g-cat/h, and H2/CO=0.67. The deactivation rate of the catalyst was low, accompanied by surprisingly low methane selectivity of 2.0-2.9 wt%. It is shown that a small amount of sulfur (existing as SO42−) may promote the catalyst by increasing activity and improving the heavier hydrocarbon selectivity. It is also comparable with other typical iron catalysts for F-T synthesis.  相似文献   

17.
High-performance hydrodesulfurization (HDS) catalysts were prepared by incipient wetness impregnation of Ni-Mo(W) and Co-Mo(W) species over siliceous MCM-41 doped with zirconium. Catalysts with W and Mo loadings of 20 and 11 wt%, respectively, and with a Ni or Co loading of 5 wt%, were prepared. As a reference, a nickel-tungsten catalyst supported on a commercial γ-Al2O3 with a 5 and 20 wt% metal loadings, respectively has also been prepared. HDS reaction of dibenzothiophene (DBT) under 3.0 MPa of total pressure and with hourly space velocity (WHSV) of 28 h−1 was used to evaluate the activity of these sulfided catalysts. All the catalysts displayed a very good performance in the temperature range of 300-340 °C, with conversions between 49.0% and 92.6%. The Ni promoted catalysts displayed better performances than those of Co promoted catalysts in the HDS of DBT. On the other hand they show different selectivity to hydrogenation, thus, in Ni promoted catalysts, the hydrogenation (HYD) reaction contributes more to the conversion of DBT than Co promoted catalysts where the direct desulfurization (DDS) reaction is more important. The performance of this set of catalysts is similar to that observed with a Ni5W20-Al2O3 catalyst in the same range of temperature (300-340 °C). However, the selectivity to the HYD product, CHB, observed with nickel promoted catalysts (Ni5-Mo11 and Ni5-W20) is higher than that found for Ni5W20-Al2O3 catalyst probably due to a higher superficial area of the MCM-support and to the presence on the surface of zirconium species, which leading to a better dispersion and lower stacking of the active phases.  相似文献   

18.
In order to study solid base catalyst for biodiesel production with environmental benignity, transesterification of edible soybean oil with refluxing methanol was carried out in the presence of calcium oxide (CaO), -hydroxide (Ca(OH)2), or -carbonate (CaCO3). At 1 h of reaction time, yield of FAME was 93% for CaO, 12% for Ca(OH)2, and 0% for CaCO3. Under the same reacting condition, sodium hydroxide with the homogeneous catalysis brought about the complete conversion into FAME. Also, CaO was used for the further tests transesterifying waste cooking oil (WCO) with acid value of 5.1 mg-KOH/g. The yield of FAME was above 99% at 2 h of reaction time, but a portion of catalyst changed into calcium soap by reacting with free fatty acids included in WCO at initial stage of the transesterification. Owing to the neutralizing reaction of the catalyst, concentration of calcium in FAME increased from 187 ppm to 3065 ppm. By processing WCO at reflux of methanol in the presence of cation-exchange resin, only the free fatty acids could be converted into FAME. The transesterification of the processed WCO with acid value of 0.3 mg-KOH/g resulted in the production of FAME including calcium of 565 ppm.  相似文献   

19.
This work aims to investigate the influence of substituting half the Mo content in a standard 6%Mo/H-ZSM-5 catalyst with either Cu or Zn in H-ZSM-5 support, on the direct conversion of methane in a flow-type fixed-bed reactor atmospherically at 700 °C at a gas hourly space velocity 1500 cm3 h−1 g−1 and times-on stream (TOS) up to 240 min. The most active was 6%Mo/H-ZSM-5 catalyst while Mo-Zn/H-ZSM-5 was more active than Mo-Cu/H-ZSM-5. The XRD data showed that the crystallite (particle) sizes were found compatible with the catalytic activities. At the initial TOS (5 min), methane splitting selectivity to C and H2 approached 100%. Higher carbon deposition on Mo-Cu catalyst caused more inhibition of ethylene further conversion to larger hydrocarbons thus leading to ethylene accumulation. TPR showed an almost complete reduction of Cu oxides at relatively lower temperatures such that the Mo-Cu catalyst acquired the highest dehydrogenation activity that enhanced markedly ethylene formation. An outstanding accomplishment is obtaining the highest benzene yield and selectivity using Mo-Zn/H-ZSM-5 catalyst, which is a prosperous challenge against the standard monometallic one. The large size of naphthalene molecule caused significant diffusion restriction on its formation in catalytic pores. The exceptional enhancement of naphthalene yield and selectivity at longer TOS using the Mo-Cu/H-ZSM-5 catalyst can be indicative that naphthalene was mostly formed on external zeolitic surface.  相似文献   

20.
Non-oxidative methane coupling into higher hydrocarbons was investigated in dielectric-barrier discharge (DBD) conditions using a stationary catalytic bed (Cu/ZnO/Al2O3). The experiments were carried out at the frequency of about 6 kHz, at 240 °C, at the pressure of ∼1220 hPa and with the overall gas flow rate 2 NL/h (0 °C, 1013 hPa). The effects of gas composition on the conversion, the effect of packing on the obtained products and activity of the catalyst under plasma conditions during long-term experiments were studied. Hydrocarbons from 2 to 5 atoms of carbon were identified in the outlet gas. It was found that in the presence of catalyst in plasma zone, overall methane conversion decreased, however the conversion towards ethane was higher, as compared to the process without packing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号