首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文探讨了气敏材料γ-Fe_2O_3的物理、化学特性对气体传感器气敏效应的影响,并对γ-Fe_2O_3产生气敏效应的机理作了初步探讨。  相似文献   

2.
氧化铁气体传感器研究II.α- Fe_2O_3气敏特性   总被引:3,自引:0,他引:3  
本文通过对α-Fe_2O_3,基半导体陶瓷材料的气敏效应、催化效应、磁性和X光电子能谱的测定,探讨了该材料的气敏特性和气敏机制.此类材料,可通过掺杂和控制其晶粒大小,以及控制陶瓷的孔隙度来提高灵敏度;纯态α-Fe_2O_3的气敏机制属体控制型为主.  相似文献   

3.
用共沉淀方法研制了掺SnO_2的α-Fe_2O_3气敏传感器试样,用X射线衍射研究了这种材料的结构,用扫描电子显微镜观察了烧结品的截面。发现这种材料基本上是由单相的α-Fe_2O_3的微晶粒所组成,试样表面呈多孔状。测量了在天然气、氢等气体中的灵敏度。提出了一个α-Fe_2O_3的气敏机理,用这个机理较完满地解释了在掺SnO_2的α-Fe_2O_3实验中所发现的有关现象。  相似文献   

4.
综述了近年来Fe_2O_3气敏材料常用的合成方法,如sol-gel法,沉淀法,水热法和微乳液法。总结了焙烧温度与掺杂效应对气敏性能的影响,探讨了气敏机理模型,并对今后的研究方向提出了一些看法。  相似文献   

5.
以SnCl_4·5H_2O与柠檬酸为原料,采用sol-gel法制备了掺杂质量分数w(Yb_2O_3)为0~1.0%的Yb_2O_3-SnO_2纳米粉体。利用XRD、TEM等测试手段分析了粉体的微观结构,采用静态配气法测试了由所制粉体制成的气敏元件对NO_2、Cl_2、H_2、H_2S、乙醇、甲醛等气体的气敏性能。结果表明:用该法得到的粉体颗粒粒径小,且均匀;工作温度为100℃时,由掺杂w(Yb_2O_3)为0.4%的SnO_2粉体,在烧结温度600℃制得的气敏元件,对体积分数为30×10–6的NO_2的灵敏度最高可达18224,且该元件具有较好的响应–恢复特性,响应时间和恢复时间分别是20s和15s。  相似文献   

6.
利用在γ-Fe_2O_3陶瓷中发现的显著的气敏现象,研制了一种伽马赤铁矿(γ-Fe_O_3)半导体陶瓷有害气体敏感元件。阐明了其气敏特性和老化机理后,通过加速试验确定了器件的寿命。这种敏感元件的灵敏度高、稳定性好,用作液化石油气探测器特别优越。本文讨论了其典型的气敏特性,工作机理和可靠性。  相似文献   

7.
用等离子体化学气相淀积法制备SnO_2/Fe_2O_3多层膜的界面处存在着一个厚度约为数百埃的O-Sn-Fe过渡层,而通常化学气相沉积法所制备的SnO_2/Fe_2O_3多层薄膜不存在与其相似的过渡层。不同SnO_2含量的烧结型SnO_2-Fe_2O_3复合材料的电导及气敏测量分析结果支持过渡层具有低电导、低灵敏特性的假设。AES,XPS及气敏特性的研究表明,退火过程不是形成过渡层的主要原因。过渡层的形成源与沉积过程中的等离子体的作用。  相似文献   

8.
气敏半导瓷及其敏感机理(上)   总被引:5,自引:0,他引:5  
气敏半导瓷的阻值随所处环境气氛的不同而变化。不同类型半导体陶瓷,将对某一类或某几类气体特别敏感。一般,气体与敏感陶瓷的作用部位只限于表面,其敏感特性和敏感体的烧结形式有很大关系。本文从氧化锡的显微结构、对不同类型氧吸附的表面过程以及添加剂的作用机理等方面,分析了氧化锡等气敏陶瓷的气敏特性;从结构上阐明了γ-Fe_2O_3和ZrO_2的导电特性,对其气敏特性的形成和作用作了科学的分析。  相似文献   

9.
金属氧化物半导体酒敏材料研究现状   总被引:1,自引:0,他引:1  
概述了SnO_2、ZnO、Fe_2O_3和复合金属氧化物酒敏材料的研究现状,阐述了掺杂、材料粒径纳米化对酒敏性能的影响。介绍了In_2O_3酒敏材料的新进展:采用微乳液的方法制备出粗径8 nm的In_2O_3纳米材料,掺入少量的Pt、La_2O_3制得功耗低(<150 mW)、灵敏度高、选择性和稳定性好的乙醇气体传感器,响应时间7 s,恢复时间30 s;并对酒敏机理进行了浅析。  相似文献   

10.
本文叙述了α-Fe_2O_3厚膜气体传感器的制造工艺,用湿法制成的α-Fe_2O_3粉体作为敏感材料,研制成了厚膜型的气体传感器。结合电子显微分析,对气体传感器的烧结温度、保温时间、热处理时间等进行了选择,最后研究了厚膜浆料中的玻璃对气敏性能的影响。  相似文献   

11.
以热氧化钨丝法制备的WO3纳米材料为基材制备了厚膜气敏元件,在常温、紫外光激发条件下实验测试了所制纯WO3气敏元件对不同体积分数的H2S气体的气敏特性曲线,探讨了元件对H2S的灵敏度与紫外光的辐射通量密度的依赖关系。结果表明,常温、无紫外光照下WO3气敏元件对H2S不敏感,而在常温及紫外光激发下WO3气敏元件对H2S的灵敏度显著增大,且随着紫外光辐射通量密度增加,元件对H2S的灵敏度先增大而后减小。  相似文献   

12.
<正>本文采用水热合成的方法制备了Co_3O_4/NiO纳米复合材料,探究了加入不同浓度NiO对材料气敏性能的影响,通过分析各种表征及测试结果,在证明复合材料可以提升材料传感器的气敏性能的同时,给出了其可能的传感机理。1介绍H2S作为一种典型的有毒有害气体,吸入过量会对人体有巨大的危害,因此开发出能快速检测H_2S的气体检测器在保护我们的生命安全方面起着重要的作用。  相似文献   

13.
采用水热法合成了Co掺杂的纳米WO3气敏材料,研究了不同含量Co掺杂的WO3气敏材料的气敏性能以及环境湿度对其性能的影响。结果表明,少量Co掺杂可以提高WO3的气敏性能,Co掺杂量为质量分数0.8%的WO3基气敏元件对H2S和NOx具有很好的选择性,灵敏度分别高达183.214和1 619.726,并且该元件具有很好的抗湿性。  相似文献   

14.
纳米氧化铁基气敏材料的研究进展   总被引:4,自引:0,他引:4  
综述了1998~2002年间纳米氧化铁基气敏材料的研究进展,对其制备方法(sol-gel法,固相合成法,化学沉淀法,微乳液法及水热法等);气敏机理,即表面电阻控制型(a -Fe2O3)与体电阻控制型(g -Fe2O3)进行了探讨。还总结了掺杂效应对气敏性能的影响,并对未来气敏材料的发展,提出了几点建议。  相似文献   

15.
采用sol-gel法制备了一系列掺有SiO2的WO3纳米粉体,通过X射线衍射仪、透射电镜等测试手段分析了材料的微观结构,测试了材料的气敏性能,探讨了煅烧温度、掺杂量、工作温度等对材料气敏性能的影响。研究发现:适量SiO2的掺杂有利于提高WO3对NO2气体的灵敏度,其中SiO2掺杂量为3%(质量分数)的气敏元件,在150℃工作温度下,灵敏度达713,响应–恢复时间分别为7s与26s。对WO3的NO2气敏机理也进行了探讨。  相似文献   

16.
以金属蒸气氧化法制备的纯纳米ZnO为气敏原料,通过丝网印刷技术在Al2O3基片上制得纯ZnO和掺杂ZnO的气敏元件阵列。结果表明,元件阵列具有低的功耗,纯ZnO气敏元件阵列在350~400℃对橙汁、可乐、酒精和汽油有较高的敏感性,灵敏度分别为2.9,2.9,53.5和43.4。通过Bi2O3+Cu2O的掺杂,可以降低纯ZnO的电导,并进一步提高气敏元件在250~350℃温度区间对汽油的敏感性。并对其气敏机理进行了探讨。  相似文献   

17.
采用溶胶凝胶法制备了纯TiO2和掺杂质量分数为5%,7%和9%CuO的TiO2纳米粉体,并对样品进行了不同温度(500,700和900℃)的退火处理。通过涂敷法制备成气敏元件,利用XRD和SEM对样品的结构和表面形貌进行了表征,并利用气敏测试系统检测其气敏特性。研究了CuO掺杂质量分数和退火温度对TiO2厚膜气敏性能的影响,进一步讨论了TiO2厚膜的气敏机理。结果表明:CuO的掺杂有效抑制了TiO2晶粒的生长,增加了对光子的利用率,降低了工作温度,提高了气敏特性。700℃退火后,质量分数为7%的CuO掺杂TiO2样品的结晶尺寸达到14.5 nm,气敏元件表现出对丙酮蒸汽单一的选择性,灵敏度为3 567,响应和恢复时间均为2 s。  相似文献   

18.
为改善WO3基敏感材料的气敏性能,采用微波回流法一次性合成了纳米WO3/TiO2复合材料,并研究TiO2掺杂量对用其制备的气敏元件气敏性能的影响。结果表明:此气敏元件对体积分数为100×10-6的NOx、二甲苯、H2S和丙酮气体具有较强的敏感性,掺杂w(TiO2)为20%的元件,对H2S和NOx的灵敏度分别为31.18和695.84;掺杂w(TiO2)为30%的元件,对二甲苯和丙酮的灵敏度分别为39.19和35.69。  相似文献   

19.
WO3的气敏特性研究   总被引:7,自引:2,他引:5  
通过实验,结合气敏元件分析方法,对WO3气敏元件的气敏特性、响应与恢复时间、电阻特性、初期驰豫特性进行了系统分析。为进一步开发研制WO3气敏元件提供了可靠的数据。  相似文献   

20.
范会涛  张彤  漆奇  刘丽 《半导体学报》2008,29(2):319-323
用化学沉淀法制备了SnO2纳米材料,利用XRD和SEM对合成产物进行了表征.采用旁热式结构制成了以SnO2为基体材料,掺杂Sm2O3的气体传感器.通过元件对C2H2气敏特性的测试表明:Sm2O3的掺杂可以明显地提高SnO2气敏材料对C2H2气体的灵敏度,当工作温度为180℃,C2H2浓度为1000ppm时,元件的灵敏度为64,响应恢复时间分别为3和20s.讨论了不同相对湿度对元件气敏特性的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号