首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to present the enhancement of gas–liquid mass transfer by heterogeneous chemical reaction near interface, the mechanism model has been proposed to describe the mass transfer rate for a gas–liquid–solid system containing fine catalyst particles. The composite grid technique has been used to solve the model equations. With this model the effect of particle size, first-order reaction rate constant, distance of particle to gas–liquid interface and residence time of particle near gas–liquid interface on the mass transfer enhancement have been discussed. The particle–particle interaction and slurry apparent viscosity can be considered in the model. The experimental data have been used to verify the model, and the agreement has been found to be satisfied.  相似文献   

2.
Experiments were conducted to investigate the effect of various dynamic and geometric parameters on mass transfer coefficients in two-phase helically coiled flow systems. Computation of mass transfer coefficients was facilitated by the measurement of limiting current at the electrodes fixed flush with the inner surface of the tube wall. Two flow systems were chosen: a two-phase liquid solid fluidized bed and a two-phase gas–liquid up flow. An equimolar potassium ferrocyanide and potassium ferricyanide solution in the presence of sodium hydroxide was used as the liquid phase. In the fluidized bed, glass spheres and sand of different sizes were employed as fluidizing solids. In two-phase flow system nitrogen was employed as inert gas. The pressure drop in the presence of fluidizing solids in helical coils was found to increase with increase in the pitch of the coil and was maximum for straight tube. The mass transfer coefficients were found to increase with increase in liquid velocity. The mass transfer coefficients in case of gas–liquid flow were found to be independent of liquid velocity and the pitch of the coil, and were largely influenced by gas velocity only. The data were correlated using jD factor, Helical number, Froude number and Stanton number.  相似文献   

3.
A modified three-phase model is proposed for batch drying of fine powders in an inert medium fluidized bed. The overall heat and mass transfer coefficients between the interstitial gas and solid phases have been determined by the proposed surface-stripping model in which the Biot number is a governing parameter. The effects of gas velocity, inlet gas temperature and mass ratio of starch to inert particles on the drying characteristics of starch in a 0.083 m ID × 0.80 m high medium fluidized bed have been determined. Based on the proposed model, the internal resistance of mass transfer at the powder is equal to the external resistance. The model predicts well the bed temperature, humidity of outlet gas, moisture content of solid particles, heat and mass transfer in an inert medium fluidized bed.  相似文献   

4.
The synthesis of carboxylic acids from alkenes, carbon monoxide and water according to the Koch process is usually carried out in a stirred gas–liquid–liquid multiphase reactor. Due to the complex reaction system with fast, equilibrium reactions and fast, irreversible reactions the yield and product distribution depend on a number of process parameters. The effect of some of these parameters was studied for the production of pivalic acid, using sulfuric acid as a catalyst. For the 96 wt.% sulfuric acid catalyst solution used the main reactions are relatively fast with respect to mass transfer and mixing. Therefore, aspects like the position of the injection point, inlet concentration, agitation intensity and injection rate all influence the yield obtained. The presence of an inert organic liquid phase was found to be beneficial, due to a combined effect of enhanced gas–liquid mass transfer and a ‘local supply’ effect for carbon monoxide near the hydrocarbon reactant inlet.  相似文献   

5.
For a physically correct analysis (and prediction) of the effect of fine, dispersed phase drops or particles on the mass transfer rate in multiphase systems, it was demonstrated that only 3-D instationary, heterogeneous mass transfer models should be used. Existing models are either homogeneous, stationary or single particle models. As a first step, a 1-D, instationary, heterogeneous multi-particle mass transfer model was developed. With this model the influence of several system parameters was studied and problems and pitfalls in the translation of modeling results for heterogeneous models into a prediction of absorption fluxes are discussed. It was found that only those particles located closely to the gas–liquid interface determine mass transfer. For these particles the distance of the first particle to the gas–liquid interface and the particle capacity turned out to be the most important parameters. Comparisons with a homogeneous model and experimental results are presented. Typical differences in results comparing a homogeneous model with the 1-D heterogeneous model developed in this work could be attributed to a change in the near interface geometry. Future work in this field should therefore be directed towards near interface phenomena. Three dimensional mass transfer models, of which a preliminary result is presented, are indispensable for this.  相似文献   

6.
Gas—liquid mass transfer has been investigated in gas—liquid-solid three-phase stirred tank reactors with Newtonian and non-Newtonian liquids. Volumetric mass transfer coefficients and gas hold-ups were measured in a 0.2 m i.d. stirred tank reactor and the effects of low-density polymeric particles (ρs, =1030 and 1200 kg/m3; up to 15 vol%) on gas—liquid mass transfer were examined. The volumetric mass transfer coefficients in water were found to decrease due to the presence of solid particles at constant impeller speed and superficial gas velocity. On the other hand, solids loading led to higher mass transfer rates in non-Newtonian carboxymethyl cellulose aqueous solutions. Our previously proposed model for mass transfer in gas—liquid two-phase systems was extended to gas—liquid—solid three-phase systems. Reasonable agreement was found between the predictions of the proposed model and the experimental data.  相似文献   

7.
The gas‐liquid mass transfer coefficients (MTCs) of a trickle bed reactor used for the study of benzene hydrogenation were investigated. The Ni/Al2O3 catalyst bed was diluted with a coarse‐grained inert carborundum (SiC) particle catalyst. Gas‐liquid mass transfer coefficients were estimated by using a heterogeneous model for reactor simulation, incorporating reaction kinetics, vapor‐liquid equilibrium, and catalyst particle internal mass transfer apart from gas‐liquid interface mass transfer. The effects of liquid axial dispersion and the catalyst wetting efficiency are shown to be negligible. Partial external mass transfer coefficients are correlated with gas superficial velocity, and comparison between them and those obtained from experiments conducted on a bed diluted with fine particles is also presented. On both sides of the gas‐liquid interface the hydrogen mass transfer coefficient is higher than the corresponding benzene one and both increase significantly with gas velocity. The gas‐side mass transfer limitations appear to be higher in the case of dilution with fine particles. On the liquid side, the mass transfer resistances are higher in the case of dilution with coarse inerts for gas velocities up to 3 · 10–2 cm/sec, while for higher gas velocities this was inversed and higher mass transfer limitations were obtained for the beds diluted with fine inerts.  相似文献   

8.
The rate of hydroformylation of 1-octene catalyzed by a water soluble catalyst is measured in mechanically agitated batch reactor at various stirrer speeds and organic phase holdups. The data have been analyzed by coupling reaction kinetics to a pseudo-homogeneous gas–liquid–liquid model based on Higbie's penetration theory which takes into account the presence of the dispersed organic phase. A rapid liquid–liquid mass transfer of the reactants is assumed leading to an equilibrium between the continuous and the dispersed phases. The predicted values of the rate are in good agreement with the experimental one. The depletion of the organic substrate in the continuous phase is found negligible.  相似文献   

9.
搅拌槽中液-液-固三相传质的实验研究   总被引:2,自引:0,他引:2  
选择欧洲化学工程师协会(EFCE)推荐的典型液-液萃取体系正丁醇-丁二酸-水,加入不同粒径的玻璃珠构成液-液-固三相传质,以去离子水为连续相,正丁醇为分散相,溶质丁二酸从分散相向连续相传质. 利用电导率法测定液-液相传质系数,并考察了搅拌转速、固体质量百分含量、不同桨型(标准Rushton桨、上推式和下推式45°六折叶涡轮桨)、桨中心平面距槽底距离以及固体颗粒粒径对相间传质的影响. 结果表明,在高转速时,惰性固体粒子的存在强化液-液体系的传质. 随着惰性固体含量增大,液-液-固三相传质有一极大值. 粒径大于100 μm 的固体粒子对液-液体系传质系数影响很小. 三种桨中Rushton桨的对流传质效果最好.  相似文献   

10.
Electrochemical method was used to study the mass transfer between the solid particles and the flowing liquid in a packed bed. From the limiting current of a single active particle immersed in inactive glass particles of the same size and shape, the mass transfer coefficients can be derived.Various size and shape of packing particles were used. The experimental results indicate that smaller packing particles have higher mass transfer coefficient. In the meantime, spherical packing particles have higher mass transfer coefficients than cylindrical particles of the same equivalent diameter. However they approach each other when liquid flowing velocity is increased.The wall-effect of the reactor on mass transfer was also observed.  相似文献   

11.
Mass transfer coefficients between particles and liquids in a slurry bubble column and a three-phase fluidized bed containing small size particles were obtained with two mass transfer systems: (1) K+ –Na+ ion-exchange in cation-exchange resin bead beds, including anion-exchange resin beads as inert particles; (2) zinc dissolution by HCl in zinc-plated glass bead beds, and in beds of non-plated glass beads. Operating parameters were gas velocity, liquid velocity, particle diameter, and particle concentration. The dependence of mass transfer coefficients on these parameters is discussed from the viewpoint of the energy supplied into the systems. Correlations of the experimental data using dimensionless groups are compared to previous correlations.  相似文献   

12.
Although extensive work has been performed on the hydrodynamics and gas‐liquid mass transfer in conventional three‐phase fluidized beds, relevant documented reports on gas‐liquid‐solid circulating fluidized beds (GLSCFBs) are scarce. In this work, the radial distribution of gas and solid holdups were investigated at two axial positions in a GLSCFB. The results show that gas bubbles and solid particles distribute uniformly in the axial direction but non‐uniformly in the radial direction. The radial non‐uniformity demonstrates a strong factor on the gas‐liquid mass transfer coefficients. A local mass transfer model is proposed to describe the gas‐liquid mass transfer at various radial positions. The local mass transfer coefficients appear to be symmetric about the central line of the riser with a lower value in the wall region. The effects of gas flow rates, particle circulating rates and liquid velocities on gas‐liquid mass transfer have also been investigated.  相似文献   

13.
加入惰性固体粒子的二元物系的流动沸腾传热特性   总被引:2,自引:0,他引:2       下载免费PDF全文
王春雨  李修伦 《化工学报》2000,21(5):685-689
引 言流动沸腾传热广泛存在于石油、化工、轻工、动力及能源等各个领域 ,但三相流动沸腾传热的研究极少 .李修伦等[1]在流动沸腾系统中加入惰性固体粒子 ,进行了汽 -液 -固三相流沸腾传热的初步研究 .李修伦、闻建平[2 ,3]进一步将三相流和沸腾换热相结合 ,较好地解决了沸腾传热强化和防垢、除垢问题 .李修伦、张利斌等[4 ]又采用循环流化床技术 ,结合粒子在沸腾系统中的强化特性 ,开发了汽 -液 -固三相循环流化床蒸发器 ,它具有良好的强化传热和防、除垢性能 .上述研究均属于单组分三相流动沸腾传热 ,而关于二元物系三相流动沸腾传热的研…  相似文献   

14.
Characteristics of size, rising velocity and distribution of liquid drops were investigated in an immiscible liquid–liquid–solid fluidized-bed reactor whose diameter was 0.102 and 2.5 m in height. In addition, pressure fluctuations were measured and analyzed by adopting the theory of chaos, to discuss the relation between the properties of liquid drops and the resultant flow behavior of three (liquid–liquid–solid) phase in the reactor. Effects of velocities of dispersed (0–0.04 m s−1) and continuous (0.02–0.14 m s−1) liquid phases and fluidized particle size (1, 2.1, 3 or 6 mm) on the liquid drop properties and pressure fluctuations in the reactor were determined. The resultant flow behavior of liquid drops became more irregular and complicated with increasing the velocity of dispersed or continuous liquid phase, but less complicated with increasing fluidized particle size, in the beds of 1.0 or 2.1 mm glass beads. In the beds of 3.0 or 6.0 mm glass beads, the effects of continuous phase velocity was marginal. The resultant flow behavior of liquid drops was dependent strongly upon the drop size and its distribution. The drop size increased with increasing dispersed phase velocity, but decreased with increasing particle size. The drop size tended to increase with approaching to the center or increasing the height from the distributor. The size and rising velocity of liquid drops and correlation dimension of pressure fluctuations have been well correlated in terms of operating variables.  相似文献   

15.
Gas and liquid velocities in laboratory scale trickle bed reactors are one or two orders of magnitude lower than those in commercial reactors. Then, the kinetic data may include the external effects. This shortcoming of laboratory scale trickle bed reactor can be resolved by diluting the catalyst bed with fine inert particles. The catalyst bed dilution increases dynamic liquid holdup, pressure drop, gas–liquid mass transfer coefficient. Hydrogenation of 2-phenylpropene on Pd/Al2O3 was performed with the trickle bed reactor diluted with fine inert particles and the coiled tubular flow-type reactor to compare the kinetics with that of the basket type batch reactor. The trickle bed reactor diluted with fine inert particles is suitable to obtain the reaction rate without external effects even if the liquid velocity is low. The coiled tubular flow-type reactor should be used at high gas velocities.  相似文献   

16.
The addition of inert particles of lighter density and smaller diameter increases considerably the mass transfer coefficient in comparison to that of mono‐component active particles at the same liquid velocity. This effect was applied to elimination of copper ions by adsorption on a chelating resin. An intensification of the film mass transfer coefficient in binary system leads to a 15 % increase of the usable adsorbent efficiency.  相似文献   

17.
中药更年安浸取液汽液固三相流自然循环蒸发浓缩   总被引:3,自引:0,他引:3       下载免费PDF全文
引 言中药生产关键环节 (提取、分离、浓缩、纯化等 )的新技术示范工程研究是中药现代化的主要内容之一 ,国家许多部委也都将其列为“十五”中药现代化专项中的重要内容 ,这为化学工程领域的科研人员提供了用武之地[1] .浓缩是中药制剂原料成型前处理的重要单元操作 ,沸腾蒸发  相似文献   

18.
Bubble formation from a single nozzle is investigated analytically and experimentally in nonaqueous liquid and liquid—solid suspensions at pressures up to 17.3 MPa. A mechanistic model is proposed to predict the initial bubble size in liquid—solid suspensions, by taking into account the various forces affecting the bubble growth including those induced by the presence of the particles, such as the suspension inertial force and the particle-bubble collision force. It is found that the initial bubble size in the suspensions is generally larger than that in the liquid mainly due to the inertia effect of the suspension. The initial bubble size increases with the solids holdup. The pressure has an insignificant effect on the initial bubble size in both the liquid and liquid—solid suspensions under the conditions of this study. The model can reasonably predict the initial bubble sizes obtained in this study and those reported in the literature.  相似文献   

19.
Butyraldehyde was aldolized with formaldehyde over a weakly basic anion-exchange resin catalyst in aqueous solvent in a batch reactor operating at atmospheric pressure and at temperatures 50–70°C. The reaction mixture was a liquid–liquid–solid system, an emulsion, the phase equilibria of which were studied through chemical analysis of the organic and aqueous phase as well as of the mixed emulsion. Simplified rate equations were derived starting from molecular reaction mechanisms on the catalyst surface. A liquid–liquid reactor model for the fitting of the experimental results was developed on the basis of the rate equations and the phase equilibria. The model described very well the experimental data.  相似文献   

20.
采用固定床半间歇萃取装置在工业生产温度与流速下研究了尼龙6颗粒中己内酰胺(CL)的液固传质过程,基于萃取过程中CL浓度在颗粒中呈现抛物线分布的假设,建立了液固传质过程的外部传质系数模型. 结果表明,温度65~95℃和液相流速0.27~2.71 mm/s时,提高温度与流速均能显著加快CL的液固萃取. 外部传质系数模型适用于描述无因次时间大于0.15的实验数据. 将CL外部传质系数进行无因次量纲化,建立了舍伍德数(Sh)、施密特数(Sc)和雷诺数(Re)间的相互关系,可用于预测尼龙6工业萃取塔中的CL外部传质系数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号