首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The selective functionalization of inert C-H bonds is always challenging due to their abundance and large bond dissociation energies. Despite recent advancements, the engagement of inert building blocks for distant functionalization is the most appealing approach for the past decade for the construction of complex molecules. Along with the upsurge of proximal C-H bond activation methods, the presence of directing group or participation of ligand surmounts the challenge of regioselective remote C-H bond transformation. Remote C-H functionalization has emerged as an important tool for the direct synthesis of a variety of natural as well as pharmaceutical products. In this area, chemists are continuously designing and exploring new catalysts, ligands and directing group for the functionalization of C-H bonds which are beyond proximity. Earlier success in this area was limited to meta-position, but recently scientists have come out with new templates which can reach even para-position. The developed catalytic transformations provide access for production of a wide range of value-added products without using classical methods such as Friedel-Craft reactions, Heck coupling, etc., providing atom economical alternate and avoiding the toxic waste generation. On this topic, we have recently published a review article entitled “Distant C-H Activation/Functionalization: A New Horizon of Selectivity beyond Proximity” in the same journal, i.e., Catalysis Reviews: Science and Engineering, 2015, 57(3), 345. In continuation of this article, the present review article will cover the catalytic processes on the mentioned topic mainly developed from 2014 to 2017. The main focus will be on mechanistic pathways and the critical role of template as well as ligands. The purpose of this review is to highlight the recent advancements in remote C-H catalysis and a path ahead.  相似文献   

2.
Effective methodology to functionalize C-H bonds requires overcoming the key challenge of differentiating among the multitude of C-H bonds that are present in complex organic molecules. This Account focuses on our work over the past decade toward the development of site-selective Pd-catalyzed C-H functionalization reactions using the following approaches: substrate-based control over selectivity through the use of directing groups (approach 1), substrate control through the use of electronically activated substrates (approach 2), or catalyst-based control (approach 3). In our extensive exploration of the first approach, a number of selectivity trends have emerged for both sp(2) and sp(3) C-H functionalization reactions that hold true for a variety of transformations involving diverse directing groups. Functionalizations tend to occur at the less-hindered sp(2) C-H bond ortho to a directing group, at primary sp(3) C-H bonds that are β to a directing group, and, when multiple directing groups are present, at C-H sites proximal to the most basic directing group. Using approach 2, which exploits electronic biases within a substrate, our group has achieved C-2-selective arylation of indoles and pyrroles using diaryliodonium oxidants. The selectivity of these transformations is altered when the C-2 site of the heterocycle is blocked, leading to C-C bond formation at the C-3 position. While approach 3 (catalyst-based control) is still in its early stages of exploration, we have obtained exciting results demonstrating that site selectivity can be tuned by modifying the structure of the supporting ligands on the Pd catalyst. For example, by modulating the structure of N-N bidentate ligands, we have achieved exquisite levels of selectivity for arylation at the α site of naphthalene. Similarly, we have demonstrated that both the rate and site selectivity of arene acetoxylation depend on the ratio of pyridine (ligand) to Pd. Lastly, by switching the ligand on Pd from an acetate to a carbonate, we have reversed the site selectivity of a 1,3-dimethoxybenzene/benzo[h]quinoline coupling. In combination with a growing number of reports in the literature, these studies highlight a frontier of catalyst-based control of site-selectivity in the development of new C-H bond functionalization methodology.  相似文献   

3.
Methods that functionalize C-H bonds can lead to new approaches for the synthesis of organic molecules, but to achieve this goal, researchers must develop site-selective reactions that override the inherent reactivity of the substrates. Moreover, reactions are needed that occur with high turnover numbers and with high tolerance for functional groups if the C-H bond functionalization is to be applied to the synthesis of medicines or materials. This Account describes the discovery and development of the C-H bond functionalization of aliphatic and aromatic C-H bonds with borane and silane reagents. The fundamental principles that govern the reactivity of intermediates containing metal-boron bonds are emphasized and how an understanding of the effects of the ligands on this reactivity led us to broaden the scope of main group reagents that react under mild conditions to generate synthetically useful organosilanes is described. Complexes containing a covalent bond between a transition metal and a three-coordinate boron atom (boryl complexes) are unusually reactive toward the cleavage of typically unreactive C-H bonds. Moreover, this C-H bond cleavage leads to the formation of free, functionalized product by rapid coupling of the hydrocarbyl and boryl ligands. The initial observation of the borylation of arenes and alkanes in stoichiometric processes led to catalytic systems for the borylation of arenes and alkanes with diboron compounds (diborane(4) reagents) and boranes. In particular, complexes based on the Cp*Rh (in which Cp is the cyclopentadienyl anion) fragment catalyze the borylation of alkanes, arenes, amines, ethers, ketals, and haloalkanes. Although less reactive toward alkyl C-H bonds than the Cp*Rh systems, catalysts generated from the combination of bipyridines and iridium(I)-olefin complexes have proven to be the most reactive catalysts for the borylation of arenes. The reactions catalyzed by these complexes form arylboronates from arenes with site-selectivity for C-H bond cleavage that depends on the steric accessibility of the C-H bonds. These complexes also catalyze the borylation of heteroarenes, and the selectivity for these substrates is more dependent on electronic effects than the borylation of arenes. The products from the borylation of arenes and heteroarenes are suitable for a wide range of subsequent conversions to phenols, arylamines, aryl ethers, aryl nitriles, aryl halides, arylboronic acids, and aryl trifluoroborates. Studies of the electronic properties of the ancillary ligand on the rate of the reaction show that the flat structure and the strong electron-donating property of the bipyridine ligands, along with the strong electron-donating property of the boryl group and the presence of a p-orbital on the metal-bound atom, lead to the increased reactivity of the iridium catalysts. Based on this hypothesis, we studied catalysts containing substituted phenanthroline ligands for a series of additional transformations, including the silylation of C-H bonds. A sequence involving the silylation of benzylic alcohols, followed by the dehydrogenative silylation of aromatic C-H bonds, leads to an overall directed silylation of the C-H bond ortho to hydroxyl functionality.  相似文献   

4.
5.
Atom economy and the use of "green" reagents in organic oxidation, including oxidation of hydrocarbons, remain challenges for organic synthesis. Solutions to this problem would lead to a more sustainable economy because of improved access to energy resources such as natural gas. Although natural gas is still abundant, about a third of methane extracted in distant oil fields currently cannot be used as a chemical feedstock because of a dearth of economically and ecologically viable methodologies for partial methane oxidation. Two readily available "atom-economical" "green" oxidants are dioxygen and hydrogen peroxide, but few methodologies have utilized these oxidants effectively in selective organic transformations. Hydrocarbon oxidation and C-H functionalization reactions rely on Pd(II) and Pt(II) complexes. These reagents have practical advantages because they can tolerate moisture and atmospheric oxygen. But this tolerance for atmospheric oxygen also makes it challenging to develop novel organometallic palladium and platinum-catalyzed C-H oxidation reactions utilizing O(2) or H(2)O(2). This Account focuses on these challenges: the development of M-C bond (M = Pt(II), Pd(II)) functionalization and related selective hydrocarbon C-H oxidations with O(2) or H(2)O(2). Reactions discussed in this Account do not involve mediators, since the latter can impart low reaction selectivity and catalyst instability. As an efficient solution to the problem of direct M-C oxidation and functionalization with O(2) and H(2)O(2), this Account introduces the use of facially chelating semilabile ligands such as di(2-pyridyl)methanesulfonate and the hydrated form of di(2-pyridyl)ketone that enable selective and facile M(II)-C(sp(n)) bond functionalization with O(2) (M = Pt, n = 3; M = Pd, n = 3 (benzylic)) or H(2)O(2) (M = Pd, n = 2). The reactions proceed efficiently in protic solvents such as water, methanol, or acetic acid. With the exception of benzylic Pd(II) complexes, the organometallic substrates studied form isolable high-valent Pt(IV) or Pd(IV) intermediates as a result of an oxidant attack at the M(II) atom. The resulting high-valent M(IV) intermediates undergo C-O reductive elimination, leading to products in high yields. Guidelines for the synthesis of products containing other C-X bonds (X = OAc, Cl, Br) while using O(2) or H(2)O(2) as oxidants are also discussed. Although the M(II)-C bond functionalization reactions including high-valent intermediates are well understood, the mechanism for the aerobic functionalization of benzylic Pd(II) complexes will require a more detailed exploration. Importantly, further optimization of the systems suitable for stoichiometric M(II)-C bond functionalization led to the development of catalytic reactions, including selective acetoxylation of benzylic C-H bonds with O(2) as the oxidant and hydroxylation of aromatic C-H bonds with H(2)O(2) in acetic acid solutions. Both reactions proceed efficiently with substrates that contain a directing heteroatom. This Account also describes catalytic methods for ethylene dioxygenation with H(2)O(2) using M(II) complexes supported by facially chelating ligands. Mechanistic studies of these new oxidation reactions point to important ways to improve their substrate scope and to develop "green" CH functionalization chemistry.  相似文献   

6.
Reactions that convert carbon-hydrogen (C-H) bonds into carbon-carbon (C-C) or carbon-heteroatom (C-Y) bonds are attractive tools for organic chemists, potentially expediting the synthesis of target molecules through new disconnections in retrosynthetic analysis. Despite extensive inorganic and organometallic study of the insertion of homogeneous metal species into unactivated C-H bonds, practical applications of this technology in organic chemistry are still rare. Only in the past decade have metal-catalyzed C-H functionalization reactions become more widely utilized in organic synthesis. Research in the area of homogeneous transition metal-catalyzed C-H functionalization can be broadly grouped into two subfields. They reflect different approaches and goals and thus have different challenges and opportunities. One approach involves reactions of completely unfunctionalized aromatic and aliphatic hydrocarbons, which we refer to as "first functionalization". Here the substrates are nonpolar and hydrophobic and thus interact very weakly with polar metal species. To overcome this weak affinity and drive metal-mediated C-H cleavage, chemists often use hydrocarbon substrates in large excess (for example, as solvent). Because highly reactive metal species are needed in first functionalization, controlling the chemoselectivity to avoid overfunctionalization is often difficult. Additionally, because both substrates and products are comparatively low-value chemicals, developing cost-effective catalysts with exceptionally high turnover numbers that are competitive with alternatives (including heterogeneous catalysts) is challenging. Although an exciting field, first functionalization is beyond the scope of this Account. The second subfield of C-H functionalization involves substrates containing one or more pre-existing functional groups, termed "further functionalization". One advantage of this approach is that the existing functional group (or groups) can be used to chelate the metal catalyst and position it for selective C-H cleavage. Precoordination can overcome the paraffin nature of C-H bonds by increasing the effective concentration of the substrate so that it need not be used as solvent. From a synthetic perspective, it is desirable to use a functional group that is an intrinsic part of the substrate so that extra steps for installation and removal of an external directing group can be avoided. In this way, dramatic increases in molecular complexity can be accomplished in a single stroke through stereo- and site-selective introduction of a new functional group. Although reactivity is a major challenge (as with first functionalization), the philosophy in further functionalization differs; the major challenge is developing reactions that work with predictable selectivity in intricately functionalized contexts on commonly occurring structural motifs. In this Account, we focus on an emergent theme within the further functionalization literature: the use of commonly occurring functional groups to direct C-H cleavage through weak coordination. We discuss our motivation for studying Pd-catalyzed C-H functionalization assisted by weakly coordinating functional groups and chronicle our endeavors to bring reactions of this type to fruition. Through this approach, we have developed reactions with a diverse range of substrates and coupling partners, with the broad scope likely stemming from the high reactivity of the cyclopalladated intermediates, which are held together through weak interactions.  相似文献   

7.
Palladium-catalyzed C-H activation/C-C bond-forming reactions have emerged as a promising class of synthetic tools in organic chemistry. Among the many different means of forging C-C bonds using Pd-mediated C-H activation, a new horizon in this field is Pd(II)-catalyzed cross-coupling of C-H bonds with organometallic reagents via a Pd(II)/Pd(0) catalytic cycle. While this type of reaction has proven to be effective for the selective functionalization of aryl C(sp(2))-H bonds, the focus of this review is on Pd(II)-catalyzed C(sp(3))-H activation/C-C cross-coupling, a topic of particular importance because reactions of this type enable fundamentally new methods for bond construction. Since our laboratory's initial report on cross-coupling of C-H bonds in 2006, this area has expanded rapidly, and the unique ability of Pd(II) catalysts to cleave and functionalize alkyl C(sp(3))-H bonds has been exploited to develop protocols for forming an array of C(sp(3))-C(sp(2)) and C(sp(3))-C(sp(3)) bonds. Furthermore, enantioselective C(sp(3))-H activation/C-C cross-coupling has been achieved through the use of chiral amino acid-derived ligands, offering a novel technique for producing enantioenriched molecules. Although this nascent field remains at an early stage of development, further investigations hold the potential to revolutionalize the way in which chiral molecules are synthesized in industrial and academic laboratories.  相似文献   

8.
The cleavage and addition of ortho C-H bonds in various aromatic compounds such as ketones, esters, imines, imidates, nitrile, and aldehydes to olefins and acetlylenes can be achieved catalytically with the aid of ruthenium catalysts. The reaction is generally highly efficient and useful in synthetic methods. The coordination to the metal center by a heteroatom in directing groups such as carbonyl and imino groups is the key. The reductive elimination to form a C-C bond is the rate-determining step.  相似文献   

9.
In the Account given herein, it has been shown that silylative coupling of olefins, well-recognized as a new catalytic route for the activation of double bond C-H bond of olefins and double bond C-Si bond of vinylsilicon compounds with ethylene elimination, can be extended over both other vinylmetalloid derivatives (double bond C-E) (where E = Ge, B, and others) as well as the activation of triple bond C-H, double bond C aryl-H, and -O-H bond of alcohols and silanols. This general transformation is catalyzed by transition-metal complexes (mainly Ru and Rh) containing or initiating TM-H and/or TM-E bonds (inorganometallics). This new general catalytic route for the activation of double bond C-H and triple bond C-H as well as double bond C-E bonds called metallative coupling or trans-metalation (cross-coupling, ring-closing, and polycondensation) constitutes an efficient method (complementary to metathesis) for stereo- and regioselective synthesis of a variety of molecular and macromolecular compounds of vinyl-E (E = Si, B, and Ge) and ethynyl-E (E = Si and Ge) functionality, also potent organometallic reagents for efficient synthesis of highly pi-conjugated organic compounds. The mechanisms of the catalysis of this deethenative metalation have been supported by equimolar reactions of TM-H and/or TM-E with initial substances and reactions with deuterium-labeled reagents.  相似文献   

10.
Environmental concerns have and will continue to have a significant role in determining how chemistry is carried out. Chemists will be challenged to develop new, efficient synthetic processes that have the fewest possible steps leading to a target molecule, the goal being to decrease the amount of waste generated and reduce energy use. Along this path, chemists will need to develop highly selective reactions with atom-economical pathways producing nontoxic byproduct. In this context, C-H bond activation and functionalization is an extremely attractive method. Indeed, for most organic transformations, the presence of a reactive functionality is required. In Total Synthesis, the "protection and deprotection" approach with such reactive groups limits the overall yield of the synthesis, involves the generation of significant chemical waste, costs energy, and in the end is not as green as one would hope. In turn, if a C-H bond functionalization were possible, instead of the use of a prefunctionalized version of the said C-H bond, the number of steps in a synthesis would obviously be reduced. In this case, the C-H bond can be viewed as a dormant functional group that can be activated when necessary during the synthetic strategy. One issue increasing the challenge of such a desired reaction is selectivity. The cleavage of a C-H bond (bond dissociation requires between 85 and 105 kcal/mol) necessitates a high-energy species, which could quickly become a drawback for the control of chemo-, regio-, and stereoselectivity. Transition metal catalysts are useful reagents for surmounting this problem; they can decrease the kinetic barrier of the reaction yet retain control over selectivity. Transition metal complexes also offer important versatility in having distinct pathways that can lead to activation of the C-H bond. An oxidative addition of the metal in the C-H bond, and a base-assisted metal-carbon bond formation in which the base can be coordinated (or not) to the metal complexes are possible. These different C-H bond activation modes provide chemists with several synthetic options. In this Account, we discuss recent discoveries involving the versatile NHC-gold(I) and NHC-copper(I) hydroxide complexes (where NHC is N-heterocyclic carbene) showing interesting Br?nsted basic properties for C-H bond activation or C-H bond functionalization purposes. The simple and easy synthesis of these two complexes involves their halide-bearing relatives reacting with simple alkali metal hydroxides. These complexes can react cleanly with organic compounds bearing protons with compatible pK(a) values, producing only water as byproduct. It is a very simple protocol indeed and may be sold as a C-H bond activation, although the less flashy "metalation reaction" also accurately describes the process. The synthesis of these complexes has led us to develop new organometallic chemistry and catalysis involving C-H bond activation (metalation) and subsequent C-H bond functionalization. We further highlight applications with these reactions, in areas such as photoluminescence and biological activities of NHC-gold(I) and NHC-copper(I) complexes.  相似文献   

11.
芳基硼酸在有机合成中的应用   总被引:1,自引:1,他引:1  
芳基硼酸作为一种重要的中间体,在有机合成中的应用相当广泛。Suzuki偶联反应是合成联芳基结构最有效的方法之一,近年许多用于芳基硼酸与各种卤代芳烃偶合的催化剂相继被开发。芳基硼酸与苯酚在Cu(OAc)2和NEt3存在时用于合成二芳基醚,与胺的偶联是合成C-N键的有效方法,与,α-β不饱和体系的1,4-共轭加成反应广泛用于β-取代羰基化合物的合成。反应采用相对无毒而又廉价的普通试剂,反应条件温和,产率高,立体选择性好。综述了芳基硼酸在联芳基合成、二芳基醚合成、芳香胺合成和催化加成反应中的应用。  相似文献   

12.
[Reaction: see text]. Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct functionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes our work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. We initially discovered an intramolecular Rh-catalyzed C-2 alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. We then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, we discovered that a novel substrate-derived Rh- N-heterocyclic carbene (NHC) complex was involved as an intermediate. We then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy 3)2] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazoline, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy 3) 2 fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid cocatalysts accelerate the alkylation, we developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. We demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules. In addition, we developed conditions to directly arylate these heterocycles with aryl halides. Our initial conditions that used PCy 3 as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (phoban) that also facilitated the coupling of aryl bromides. We then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, we anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C-H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations.  相似文献   

13.
Activation/functionalization of inert C-H bond has undergone rapid growth in last decade and provides novel retro-synthetic disconnections for the synthesis of valuable molecules. The selectivity is often achieved by the use of directing group and is mainly limited to the proximal C-H bond. Initially, meta C-H activations were based on electronic or steric control and now it can be achieved by employing nitrile-based end-on-template as the directing group. The compilation of the remote C-H activation strategy will provide the useful linkage to the scientific community. This article is focused on recent progress in remote C-H activation, mechanistic understanding, and its applications in the field of total synthesis of targeted molecules.  相似文献   

14.
The development of methods for the stereoselective functionalization of sp(3) C-H bonds is a challenging undertaking. This Account describes the scope of the combined C-H functionalization/Cope rearrangement (CHCR), a reaction that occurs between rhodium-stabilized vinylcarbenoids and substrates containing allylic C-H bonds. Computational studies have shown that the CHCR reaction is initiated by a hydride transfer to the carbenoid from an allyl site on the substrate, which is then rapidly followed by C-C bond formation between the developing rhodium-bound allyl anion and the allyl cation. In principle, the reaction can proceed through four distinct orientations of the vinylcarbenoid and the approaching substrate. The early examples of the CHCR reaction were all highly diastereoselective, consistent with a reaction proceeding via a chair transition state with the vinylcarbenoid adopting an s-cis conformation. Recent computational studies have revealed that other transition state orientations are energetically accessible, and these results have guided the development of highly stereoselective CHCR reactions that proceed through a boat transition state with the vinylcarbenoid in an s-cis configuration. The CHCR reaction has broad applications in organic synthesis. In some new protocols, the CHCR reaction acts as a surrogate to some of the classic synthetic strategies in organic chemistry. The CHCR reaction has served as a synthetic equivalent of the Michael reaction, the vinylogous Mukaiyama aldol reaction, the tandem Claisen rearrangement/Cope rearrangement, and the tandem aldol reaction/siloxy-Cope rearrangement. In all of these cases, the products are generated with very high diastereocontrol. With a chiral dirhodium tetracarboxylate catalyst such as Rh(2)(S-DOSP)(4) or Rh(2)(S-PTAD)(4), researchers can achieve very high levels of asymmetric induction. Applications of the CHCR reaction include the effective enantiodifferentiation of racemic dihydronaphthalenes and the total synthesis of several natural products: (-)-colombiasin A, (-)-elisapterosin B, and (+)-erogorgiaene. By combining the CHCR reaction into a further cascade sequence, we and other researchers have achieved the asymmetric synthesis of 4-substituted indoles, a new class of monoamine reuptake inhibitors.  相似文献   

15.
The functional group transformations carried out by the palladium-catalyzed Wacker and Heck reactions are radically different, but they are both alkenyl C-H bond functionalization reactions that have found extensive use in organic synthesis. The synthetic community depends heavily on these important reactions, but selectivity issues arising from control by the substrate, rather than control by the catalyst, have prevented the realization of their full potential. Because of important similarities in the respective selectivity-determining nucleopalladation and β-hydride elimination steps of these processes, we posit that the mechanistic insight garnered through the development of one of these catalytic reactions may be applied to the other. In this Account, we detail our efforts to develop catalyst-controlled variants of both the Wacker oxidation and the Heck reaction to address synthetic limitations and provide mechanistic insight into the underlying organometallic processes of these reactions. In contrast to previous reports, we discovered that electrophilic palladium catalysts with noncoordinating counterions allowed for the use of a Lewis basic ligand to efficiently promote tert-butylhydroperoxide (TBHP)-mediated Wacker oxidation reactions of styrenes. This discovery led to the mechanistically guided development of a Wacker reaction catalyzed by a palladium complex with a bidentate ligand. This ligation may prohibit coordination of allylic heteroatoms, thereby allowing for the application of the Wacker oxidation to substrates that were poorly behaved under classical conditions. Likewise, we unexpectedly discovered that electrophilic Pd-σ-alkyl intermediates are capable of distinguishing between electronically inequivalent C-H bonds during β-hydride elimination. As a result, we have developed E-styrenyl selective oxidative Heck reactions of previously unsuccessful electronically nonbiased alkene substrates using arylboronic acid derivatives. The mechanistic insight gained from the development of this chemistry allowed for the rational design of a similarly E-styrenyl selective classical Heck reaction using aryldiazonium salts and a broad range of alkene substrates. The key mechanistic findings from the development of these reactions provide new insight into how to predictably impart catalyst control in organometallic processes that would otherwise afford complex product mixtures. Given our new understanding, we are optimistic that reactions that introduce increased complexity relative to simple classical processes may now be developed based on our ability to predict the selectivity-determining nucleopalladation and β-hydride elimination steps through catalyst design.  相似文献   

16.
The development of an efficient catalytic activation (cleavage) system for C-H and C-C bonds is an important challenge in organic synthesis, because these bonds comprise a variety of organic molecules such as natural products, petroleum oils, and polymers on the earth. Among many elegant approaches utilizing transition metals to activate C-H and C-C bonds facilely, chelation-assisted protocols based on the coordinating ability of an organic moiety have attracted great attention, though they have often suffered from the need for an intact coordinating group in a substrate. In this Account, we describe our entire efforts to activate C-H or C-C bonds adjacent to carbonyl groups by employing a new concept of metal-organic cooperative catalysis (MOCC), which enables the temporal installation of a 2-aminopyridyl group into common aldehydes or ketones in a catalytic way. Consequently, a series of new catalytic reactions such as alcohol hydroacylation, oxo-ester synthesis, C-C triple bond cleavage, hydrative dimerization of alkynes, and skeletal rearrangements of cyclic ketones was realized through MOCC. In particular, in the quest for an optimized MOCC system composed of a Wilkinson's catalyst (Ph 3P) 3RhCl and an organic catalyst (2-amino-3-picoline), surprising efficiency enhancements could be achieved when benzoic acid and aniline were introduced as promoters for the aldimine formation process. Furthermore, a notable accomplishment of C-C bond activation has been made using 2-amino-3-picoline as a temporary chelating auxiliary in the reactions of unstrained ketones with various terminal olefins and Wilkinson's catalyst. In the case of seven-membered cyclic ketones, an interesting ring contraction to five- or six-membered ones takes place through skeletal rearrangements initiated by the C-C bond activation of MOCC. On the other hand, the fundamental advances of these catalytic systems into recyclable processes could be achieved by immobilizing both metal and organic components using a hydrogen-bonded self-assembled system as a catalyst support. This catalyst-recovery system provides a homogeneous phase at high temperature during the reaction and a heterogeneous phase at room temperature after the reaction. The product could be separated conveniently from the self-assembly support system by decanting the upper layer. The immobilized catalysts of both 2-aminopyridine and rhodium metal species sustained high catalytic activity for up to the eight catalytic reactions. In conclusion, the successful incorporation of an organocatalytic cycle into a transition metal catalyzed reaction led us to find MOCC for C-H and C-C bond activation. In addition, the hydrogen-bonded self-assembled support has been developed for an efficient and effective recovery system of homogeneous catalysts and could be successful in immobilizing both metal and organic catalysts.  相似文献   

17.
莫松 《广州化工》2011,39(23):23-27
卤代芳烃是一类重要的化合物,合成此类化合物的方法一直是化学家们研究的热点。C-H键直接转化为碳卤键为芳基卤代物的合成提供了一种便捷的方法。最近,钯和铜促进的C-H键活化转化为C-X(X=F,Cl,Br,I)键得到很大发展,在很大程度上解决了低的区域选择性,低毒性的问题。  相似文献   

18.
ABSTRACT

Diaryl sulfides play an important role in the synthesis of natural products, pharmaceutically and biologically molecules. The metal catalysts are powerful tools for C–S bonds formation. Despite the utility of palladium-catalyzed carbon–sulfur bond formation, copper complexes are fascinating catalysts for this transformation because copper is less toxic and inexpensive than palladium. In recent times, a large number of protocols using various copper catalysts to perform cross-coupling reactions leading to the synthesis of diaryl sulfides have been described. In this review, we summarized recent developments in the area of synthesis of diaryl sulfides based on using copper catalysts. Both the considerable advantages and drawbacks of these protocols are discussed.  相似文献   

19.
Enzymatic reactions take place with high chemo-, regio-, and stereo-selectivity, appealing for the direct functionalization of abundant and inexpensive compounds with C-H bonds to make fine chemicals such as high-value intermediates and pharmaceuticals. This review summarizes recent progress in the enzymatic functionalization of C-H bonds with an emphasis on heme enzymes such as cytochrome P450s, chloroperoxidase and unspecific peroxygenases. Specific examples are discussed to elucidate the applications of the molecular and process engineering approaches to overcome the challenges hindering enzymatic C-H functionalization. Also discussed is the recent development of the chemo-enzymatic cascade as an effective way to integrate the power of metal catalysis and enzymatic catalysis for C-H functionalization.  相似文献   

20.
Enzymatic reactions take place with high chemo-, regio-, and stereo-selectivity, appealing for the direct functionalization of abundant and inexpensive compounds with C-H bonds to make fine chemicals such as high-value intermediates and pharmaceuticals. This review summarizes recent progress in the enzymatic functionalization of C-H bonds with an emphasis on heme enzymes such as cytochrome P450s, chloroperoxidase and unspecific peroxygenases. Specific examples are discussed to elucidate the applications of the molecular and process engineering approaches to overcome the challenges hindering enzymatic C-H functionalization. Also discussed is the recent development of the chemo-enzymatic cascade as an effective way to integrate the power of metal catalysis and enzymatic catalysis for C-H functionalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号