首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arsenic removal efficiencies of 43 household sand filters were studied in rural areas of the Red River Delta in Vietnam. Simultaneously, raw groundwater from the same households and additional 31 tubewells was sampled to investigate arsenic coprecipitation with hydrous ferric iron from solution, i.e., without contact to sand surfaces. From the groundwaters containing 10-382 microg/L As, < 0.1-48 mg/L Fe, < 0.01-3.7 mg/L P, and 0.05-3.3 mg/L Mn, similar average removal rates of 80% and 76% were found for the sand filter and coprecipitation experiments, respectively. The filtering process requires only a few minutes. Removal efficiencies of Fe, phosphate, and Mn were > 99%, 90%, and 71%, respectively. The concentration of dissolved iron in groundwater was the decisive factor for the removal of arsenic. Residual arsenic levels below 50 microg/L were achieved by 90% of the studied sand filters, and 40% were even below 10 microg/L. Fe/As ratios of > or = 50 or > or = 250 were required to ensure arsenic removal to levels below 50 or 10 microg/L, respectively. Phosphate concentrations > 2.5 mg P/L slightly hampered the sand filter and coprecipitation efficiencies. Interestingly, the overall arsenic elimination was higher than predicted from model calculations based on sorption constants determined from coprecipitation experiments with artificial groundwater. This observation is assumed to result from As(lll) oxidation involving Mn, microorganisms, and possibly dissolved organic matter present in the natural groundwaters. Clear evidence of lowered arsenic burden for people consuming sand-filtered water is demonstrated from hair analyses. The investigated sand filters proved to operate fast and robust for a broad range of groundwater composition and are thus also a viable option for mitigation in other arsenic affected regions. An estimation conducted for Bangladesh indicates that a median residual level of 25 microg/L arsenic could be reached in 84% of the polluted groundwater. The easily observable removal of iron from the pumped water makes the effect of a sand filter immediately recognizable even to people who are not aware of the arsenic problem.  相似文献   

2.
Daily observations of dissolved aluminum, iron, and manganese in an estuary downstream of a coastal acid sulfate soil (CASS) catchment provided insights into how floods and submarine groundwater discharge drive wetland metal exports. Extremely high Al, Fe, and Mn concentrations (up to 40, 374, and 8 mg L(-1), respectively) were found in shallow acidic groundwaters from the Tuckean Swamp, Australia. Significant correlations between radon (a natural groundwater tracer) and metals in surface waters revealed that metal loads were driven primarily by groundwater discharge. Dissolved Fe, Mn, and Al loads during a 16-day flood triggered by a 213 mm rain event were respectively 80, 35, and 14% of the total surface water exports during the four months of observations. Counter clockwise hysteresis was observed for Fe and Mn in surface waters during the flood due to delayed groundwater inputs. Groundwater-derived Fe fluxes into artificial drains were 1 order of magnitude higher than total surface water exports, which is consistent with the known accumulation of monosulfidic black ooze within the wetland drains. Upscaling the Tuckean catchment export estimates yielded dissolved Fe fluxes from global acid sulfate soil catchments on the same order of magnitude of global river inputs into estuaries.  相似文献   

3.
A permeable reactive barrier (PRB) using zerovalent iron (ZVI) was installed at a site near Ca?on City, CO, to treat molybdenum (Mo) and uranium (U) in groundwater. The PRB initially decreased Mo concentrations from about 4.8 to less than 0.1 mg/L; however, Mo concentrations in the ZVI increased to 2.0 mg/L after about 250 days and continued to increase until concentrations in the ZVI were about 4 times higherthan in the influent groundwater. Concentrations of U were reduced from 1.0 to less than 0.02 mg/L during the same period. Investigations of solid-phase samples indicate that (1) calcium carbonate, iron oxide, and sulfide minerals had precipitated in pores of the ZVI; (2) U and Mo were concentrated in the upgradient 5.1 cm of the ZVI; and (3) calcium was present throughout the ZVI accounting for up to 20.5% of the initial porosity. Results of a column test indicated that the ZVI from the PRB was still reactive for removing Mo and that removal rates were dependenton residence time and pH. The chemical evolution of the PRB is explained in four stages that present a progression from porous media flow through preferential flow and, finally, complete bypass of the ZVI.  相似文献   

4.
Summary Using a new analytical technique, the inductively coupled plasma atomic emission spectroscopy (ICP-AES), 51 red and rose wines from D.O.C. areas of Southern Italy were measured for the following 14 elements: B, Al, Si, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Sn, Pb.Among these elements the most abundant were Si with an average value of 19.60 mg/l, Fe 5.87 mg/l, B 5.19 mg/l, Al 2.13 mg/l and Mn 1.40 mg/l; Cu, Zn and Sn were present in average quantities between 0.10 and 1.00 mg/l; the remaining elements had average concentrations below 0.10 mg/l.
Gehalt an Spurenelementen in einigen D.O.C.-Weinen aus Süditalien I. Quantitative Bestimmung von B, Al, Si, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Sn, Pb durch ICP Atomemissions-Spektrometrie
Zusammeufassung Unter Anwendung emer neuen analytischen Methode, ICP Atomemissions-Spektrometrie, wurden in 51 Rot- und Rosé-D.O.C.-Weinen aus Süditalien, die folgenden 14 Elemente bestimmt: B, Al, Si, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Mo, Sn, Pb.Unter diesen Elementen sind Si mit einem Mittelwert von 19,60 mg/l, Fe mit 5,87 mg/l, B mit 5,19 mg/l, Al mit 2,13 mg/l und Mn mit 1,40 mg/1 die häufigsten. Die mittleren Konzentrationswerte für Cu, Zn und Sn liegen zwischen 0,10 und 1,00 mg/l; während die der restlichen Elemente unter 0,10 mg/l sind.
  相似文献   

5.
A simple arsenic removal system was used in Bangladesh by six households for 4 months to treat well water containing 190-750 microg/L As as well as 0.4-20 mg/L Fe and 0.2-1.9 mg/L P. The system removes As from a 16-L batch of water in a bucket by filtration through a sand bed following the addition of about 1.5 g of ferric sulfate and 0.5 g of calcium hypochlorite. Arsenic concentrations in all but 1 of 72 samples of treated water were below the Bangladesh drinking water standard of 50 microg/L for As. Approximately half of the samples also met the World Health Organization (WHO) guideline of 10 microg/L. At the two wells that did not meet the WHO guideline, observations were confirmed by additional experiments in one case ([P] = 1.9 mg/L) but not in the other, suggesting that the latter household was probably not following the instructions. Observed residual As levels are consistent with predictions from a surface complexation model only if the site density is increased to 2 mol/mol of Fe. With the exception of Mn, the average concentrations of other inorganic constituents of health concern (Cr, Ni, Cu, Se, Mo, Cd, Sb, Ba, Hg, Pb, and U) in treated water were below their respective WHO guideline for drinking water.  相似文献   

6.
Noble gas excess air applied to distinguish groundwater recharge conditions   总被引:2,自引:0,他引:2  
The application of geochemical tracers in groundwater studies can provide valuable insights into the rates and sources of groundwater recharge, residence times, and flow dynamics that are of significant value in the management of this important natural resource. This paper demonstrates the application of noble gas excess air to distinguish groundwater bodies with different recharge histories in a layered sandstone aquifer system in the east of England. The sampled groundwaters are all supersaturated with respect to neon, indicating the presence of excess air. The lowest excess air concentrations occur where the aquifer is unconfined (deltaNe, the proportion of neon in excess of saturation, = 12-26%) and recharge occurs directly to the outcrop. Groundwater in the confined part of the aquifer can be divided into two hydrochemical types based upon the dissolved ion chemistry: Type 1 groundwaters contain more excess air (deltaNe = 115-120%) than Type 2(deltaNe = 22-62%). The difference in excess air concentrations confirms that groundwater enters the confined aquifer along two discrete pathways. Furthermore, excess neon concentrations predicted from the magnitude of annual water table fluctuation observed in the different recharge areas are in good agreement with those measured in the corresponding groundwaters. We therefore recommend that excess air may be usefully employed as a direct indicator of the volume of long-term net annual groundwater recharge.  相似文献   

7.
This study assessed concentrations in and intake of toxic and essential elements from formulas and foods intended for infants during their first 6 months of life. Concentrations of the essential elements Ca, Fe, Zn, Mn and Mo were significantly higher in most formulas than in breast milk. Daily intake of Mn from formula varies from ten up to several hundred times the intake of the breast fed infant, levels that may be associated with adverse health effects. One portion of infant food provided significantly more Fe, Mn, Mo, As, Cd, Pb and U than one feeding of breast milk, but less Ca, Cu and Se. Rice-based products in particular contained elevated As concentrations. Drinking water used to mix powdered formula may add significantly to the concentrations in the ready-made products. Evaluation of potentially adverse effects of the elevated element concentrations in infant formulas and foods are warranted.  相似文献   

8.
We report time-series data collected over two years for delta18O, delta2H, and Ca, Mg, K, and Cl, concentrations for 10 ponds in, and upflow of, an As-polluted region of southern West Bengal. We compare the compositions of As-polluted groundwaters from wells with the compositions of waters in ponds upflow, and within the range of influence, of the wells. Conservative tracers (delta18O, delta2H, K), and other tracers (Ca, Mg) that are likely conservative in the waters, showthat pondwater and groundwater are distinct and do not overlap in composition. These data show that water from ponds cannot be identified in As-polluted groundwater, so putative DOC in pondwater cannot be mixing into the As-polluted groundwater we have sampled. Separate estimates of the degree of recharge from ponds to groundwater, using calculations based on temporal variations in salt content and isotopic composition in ponds, and salt-balance, show that insignificant amounts of As-polluted groundwater are derived via pond recharge. It follows that pondwater in the study area does not contribute significant mass to arsenic-polluted groundwater and so does not provide organic matterto aquifers in amounts sufficientto drive reduction of iron oxyhydroxides and hence arsenic pollution.  相似文献   

9.
The objective of this research was to develop a robust preservation method for stabilizing inorganic As(IlI/V) species in synthetic and actual groundwaters. Ethylenediaminetetraacetic acid (EDTA), H2SO4, H3PO4, and EDTA-acetic acid (HAc) were evaluated in synthetic groundwater containing 3 mg/L Fe(ll) in the pH range 6.5-8.4 and Eh range -100 to +200 mV at room temperature. In the absence of strong UV light, only EDTA-HAc was found to be an effective preservative under all the experimental conditions tested. A total of 89 samples (including 16 samples in triplicate) from 55 drinking waterwells in Minnesota, California, and North Dakota were preserved with a combination of EDTA-HAc and speciated to evaluate its effectiveness for preserving inorganic arsenic species in actual groundwater samples. The preserved and field-speciated samples were repeatedly speciated and analyzed in the laboratory for up to 85 days after collection. Field-speciated As(lll) concentrations were compared with the As(lll) concentrations in the preserved samples. The results were highly correlated (slope 0.9773, R2 = 0.9986), which indicates that during sample transportation and storage the distribution of arsenic species did not change for samples preserved with EDTA-HAc.  相似文献   

10.
A total of 480 samples of milk from 10 organically and 10 conventionally producing dairy farms in Denmark and covering 8 sampling periods over 1 year (triplicate samplings) were analysed for 45 trace elements and 6 major elements by high-resolution inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. Sampling, sample preparation, and analysis of the samples were performed under carefully controlled contamination-free conditions. The dairy cattle breeds were Danish-Holstein or Jersey. Sources of variance were quantified, and differences between production systems and breeds were tested. The major source of variation for most elements was week of sampling. Concentrations of Al, Cu, Fe, Mo, Rb, Se, and Zn were within published ranges. Concentrations of As, Cd, Cr, Mn and Pb were lower, and concentrations of Co and Sr were higher than published ranges. Compared with Holsteins, Jerseys produced milk with higher concentrations of Ba, Ca, Cu, Fe, Mg, Mn, Mo, P, Rh, and Zn and with a lower concentration of Bi. The organically produced milk, compared with conventionally produced milk, contained a significantly higher concentration of Mo (48 v. 37 ng/g) and a lower concentration of Ba (43 v. 62 ng/g), Eu (4 v. 7 ng/g), Mn (16 v. 20 ng/g) and Zn (4400 v. 5150 ng/g respectively). The investigation yielded typical concentrations for the following trace elements in milk, for which no or very few data are available: Ba, Bi, Ce, Cs, Eu, Ga, Gd, In, La, Nb, Nd, Pd, Pr, Rh, Sb, Sm, Tb, Te, Th, Ti, Tl, U, V, Y, and Zr.  相似文献   

11.
Seasonal (October 1997 and May 1998) concentrations of dissolved (< 0.45 micron) trace metals (Ag, Al, Cd, Cu, Fe, Mn), inorganic nutrients (NO3, PO4, Si), DOC and DON were measured at seven wells during periods of low and high groundwater flow, in the aquifer around Flanders Bay in Eastern Long Island, New York. Similar measurements were made in surface waters of Flanders Bay, a shallow coastal embayment with restricted water flushing and river input. Dissolved constituents in the groundwater were classified according to their behavior under different flow conditions as follows: (1) peak during high flow (DOC, pH, Si, NO3, Al and Cu); (2) peak during low flow (salinity, DON, Ag, Cd, Mn); and (3) concentrations independent of flow conditions (PO4 and Fe). The primarily urban and agricultural land use on the North Fork of Long Island was reflected in higher concentrations of nutrients, Cu and Cd in groundwater, compared to samples from the South Fork which is mostly open parkland. Principal component analysis indicated that groundwater seepage could influence the chemical composition of Flanders Bay with respect to the major geochemical carriers (e.g. Fe and Mn). However, mass balance estimates for Cu indicated that, during low flow conditions, net groundwater Cu input was about 10% of the total input. In contrast, during high flow, net groundwater flow could account for up to 58% of all Cu inputs. Nevertheless, a large imbalance, which accounted for up to 70% of the outflux during low aquifer recharge, suggested that the Cu budget of the Bay was not adequately described by the inputs considered (river, net groundwater flow, atmospheric deposition, and tidal exchange). Important missing components of the Cu mass balance in Flanders Bay may include groundwater circulation driven by tides and waves as well as diffusive benthic fluxes.  相似文献   

12.
Redox status of shallow groundwaters (1-3 m depths) at Owens Dry Lake was studied to help guide mitigation efforts for attenuating dust generation from the dry lakebed. Redox conditions were characterized by Eh, oxidative capacity (OXC), and terminal electron accepting processes (TEAPs) as well as examining the energetics of TEAPs. Groundwater chemistry related to redox status was determined by major solute concentrations, dissolved gases (O2, H2, CH4), aqueous redox species (NO3, Mn2+, Fe2+/ Fe3+, SO4(2-)/HS-, DOC), and major redox sensitive components in the solid phase (extractable Fe/Mn). All of these measures of redox status indicate that sulfate reduction is the major process regulating redox conditions in most shallow groundwaters of Owens Dry Lake. Dissolved sulfate concentrations were regulated primarily by evaporation resulting in increasing concentrations as water migrates from the shoreline (<1 mM) to the center (up to 417 mM) of the dry lakebed. Eh values were generally in the range of -240 to -170 mV. The oxidative capacity demonstrates the dominant contribution of sulfate to OXC. The dominance of sulfate restricts further redox development, such as methanogenesis. Dissolved H2 concentrations ranged from 0.5 to 7.8 nM. According to the empirically defined H2 ranges, sulfate reduction was the most predominant TEAP. Moreover, thermodynamic calculations of TEAPs for H2 utilization support favorable energetics for both sulfate reduction and methanogenesis. The calculated available energy yield for sulfate reduction in the shallow groundwater of Owens Dry Lake was higher than other systems due to the high sulfate concentration.  相似文献   

13.
Permeable reactive barriers designed to enhance bacterial sulfate reduction and metal sulfide precipitation have the potential to prevent acid mine drainage and the associated release of dissolved metals. Two column experiments were conducted using simulated mine-drainage water to assess the performance of organic carbon-based reactive mixtures under controlled groundwater flow conditions. The simulated mine drainage is typical of mine-drainage waterthat has undergone acid neutralization within aquifers. This water is near neutral in pH and contains elevated concentrations of Fe(II) and SO4. Minimum rates of SO4 removal averaged between 500 and 800 mmol d(-1) m(-3) over a 14-month period. Iron concentrations decreased from between 300 and 1200 mg/L in the influent to between <0.01 and 220 mg/L in the columns. Concentrations of Zn decreased from 0.6-1.2 mg/L in the input to between 0.01 and 0.15 mg/L in the effluent, and Ni concentrations decreased from between 0.8 and 12.8 mg/L to <0.01 mg/L. The pH increased slightly from typical input values of 5.5-6.0 to effluent values of 6.5-7.0. Alkalinity, generally <50 mg/L (as CaCO3) in the influent, increased to between 300 and 1,300 mg/L (as CaCO3) in the effluent from the columns. As a result of decreased Fe(II) concentrations and increased alkalinity, the acid-generating potential of the simulated mine-drainage water was removed, and a net acid-consuming potential was observed in the effluent water.  相似文献   

14.
Dissimilatory metal-reducing bacteria can mobilize As, but few studies have studied such processes in deeper orange-colored Pleistocene sands containing 1-2 mg kg(-1) As that are associated with low-As groundwater in Bangladesh. To address this gap, anaerobic incubations were conducted in replicate over 90 days using natural orange sands initially containing 0.14 mg kg(-1) of 1 M phosphate-extractable As (24 h), >99% as As(V), and 0.8 g kg(-1) of 1.2 M HCl-leachable Fe (1 h at 80 °C), 95% as Fe(III). The sediment was resuspended in artificial groundwater, with or without lactate as a labile carbon source, and inoculated with metal-reducing Shewanella sp. ANA-3. Within 23 days, dissolved As concentrations increased to 17 μg L(-1) with lactate, 97% as As(III), and 2 μg L(-1) without lactate. Phosphate-extractable As concentrations increased 4-fold to 0.6 mg kg(-1) in the same incubations, even without the addition of lactate. Dissolved As levels in controls without Shewanella, both with and without lactate, instead remained <1 μg L(-1). These observations indicate that metal-reducers such as Shewanella can trigger As release to groundwater by converting sedimentary As to a more mobilizable form without the addition of high levels of labile carbon. Such interactions need to be better understood to determine the vulnerability of low-As aquifers from which drinking water is increasingly drawn in Bangladesh.  相似文献   

15.
Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.  相似文献   

16.
研究金属离子对蜡状芽孢杆菌合成多聚γ-谷氨酸(γ-PGA)的影响。通过在培养基中加入定量的Mn2+、K+、Fe3+、Mg2+、Ca2+、Mo6+、Zn2+、Co2+、Cd2+、Cu2+,定时取发酵液用原子吸收分光光度法测定蜡状芽孢杆菌合成γ-PGA过程中金属离子的消耗情况、菌体生物量及γ-PGA产量;在发酵培养基中,分别加入不同质量浓度的Mn2+、Ca2+、Zn2+、Co2+、Mo6+,通过组合不同金属离子以及控制各组合中离子质量浓度测定菌体生物量和γ-PGA含量的变化,结合金属离子的消耗量探讨金属离子对蜡状芽孢杆菌合成γ-PGA的影响。结果表明:在蜡状芽孢杆菌合成γ-PGA的过程中均消耗一定量的Mn2+、K+、Fe3+、Mg2+、Ca2+、Mo6+、Zn2+、Co2+,其中Mn2+、K+、Fe3+、Mg2+、Ca2+在生长代谢过程中利用较多,而Cd2+、Cu2+的质量浓度不变化;Mn2+是γ-PGA合成的必需元素,在其质量浓度为0.08g/L时,γ-PGA合成达最高峰(1.25g/L)。当Mn2+质量浓度为0.08g/L时,适当增加Ca2+质量浓度就能较大幅度提高γ-PGA合成量;同时固定Mn2+、Ca2+质量浓度,适量加入不同质量浓度的Zn2+、使γ-PGA的合成量增加明显,最高可达2.94g/L,而Mo6+对γ-PGA的合成影响不明显,但对菌体生物量的影响较大。  相似文献   

17.
Beers brewed commercially in China have been surveyed for the presence of a number of potential contaminants, including benzene, trihalomethanes and formaldehyde. Of 84 beers only 6 contained detectable benzene, at concentrations ranging from 1.9 to 7.1 μg/L (mean of 4.0 μg/L). Further investigations suggested that the source of the benzene could be the carbon dioxide used for carbonation. Trihalomethanes were measured in 107 beers (consisting of 27 Chinese brands) by headspace gas chromatograph with average and maximum concentrations of 1.2 μg/L and 5.2 μg/L respectively. Total trihalomethanes were also measured in water samples from different brewing sites. Concentrations varied from 2.7–46.9 μg/L, except for one sample which contained 79.3 μg/L. Formaldehyde was measured in 29 beers (including 7 imported brands) using solid‐phase microextraction with on‐fiber derivatization. Formaldehyde levels were between 0.082‐0.356 mg/L. None of the beer samples exceeded WHO drinking water criteria for benzene, trihalomethanes or formaldehyde.  相似文献   

18.
Around 38% of the area of Bangladesh is irrigated with groundwater to grow dry season crops, most importantly boro rice. Due to high As concentrations in many groundwaters, over 1000 tons of As are thus transferred to arable soils each year, creating a potential risk for future food production. We studied the reactions and changing speciation of As, Fe, P, and other elements in initially anoxic water during and after irrigation and the resulting spatial distribution of As input to paddy soils near Sreenagar (Munshiganj), 30 km south of Dhaka, in January and April 2005 and February 2006. The irrigation water had a constant concentration of 397 +/- 7 microg L(-1) As (approximately 84% As(III)), 11 +/- 0.1 mg L(-1) Fe, and 2 +/- 0.1 mg L(-1) P. During the fast flow along the longest irrigation channel (152 m) As, Fe, and P speciation changed, but total concentrations did not decrease significantly, indicating that As input to fields was independent of the length of the irrigation channels. In contrast, during slow water flow across the fields, As, Fe, and P concentrations decreased strongly with increasing distance from the water inlet, due to formation and settling of As- and P-bearing Fe aggregates and by adsorption to soil minerals. Total As concentrations in field water were approximately 3 times higher close to the inlet than in the opposite field corner shortly after irrigation, and decreased to below 35 microg L(-1) over the next 72 h. The laterally heterogeneous transfer of As, Fe, and P from irrigation waterto soil has important consequences for their distribution in irrigated fields and needs to be considered in sampling and in assessing the dynamics and mass balances of As fluxes among irrigation water, soil, and floodwater.  相似文献   

19.
The behavior of As in paddy fields is of great interest considering high As contents of groundwater in several Asian countries where rice is the main staple. We determined the concentrations of Fe, Mn, and As in soil, soil water, and groundwater samples collected at different depths down to 2 m in an experimental paddy field in Japan during the cycle of flooded and non-flooded periods. In addition, we measured the oxidation states of Fe, Mn, and As in situ in soil samples using X-ray absorption near-edge structure (XANES) and conducted sequential extraction of the soil samples. The results show that Fe (hydr)oxide hosts As in soil. Arsenic in irrigation waters is incorporated in Fe (hydr)oxide in soil during the non-flooded period, and the As is quickly released from soil to water during the flooded period because of reductive dissolution of the Fe (hydr)oxide phase and reduction of As from As(V) to As(III). The enhancement of As dissolution by the reduction of As is supported by high As/Fe ratios of soil water during the flooded period and our laboratory experiments where As(III) concentrations and As(III)/As(V) ratios in submerged soil were monitored. Our work, primarily based on data from an actual paddy field, suggests that rice plants are enriched in As because the rice grows in flooded paddy fields when mobile As(III) is released to soil water.  相似文献   

20.
Concentrations of As, Ba, Cd, Co, Mn, Pb, Se, Sr, V, Cu, Fe, Mg, Zn and Mo were determined in conventional and home-produced eggs as sold in Brazil. Thirty-four conventional and 21 home-produced samples were obtained in different Brazilian cities. Elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of Ba, Cd, Co, Pb, Se, Fe, Zn and Mo in conventional and home-produced eggs differed (statistically significant). Correlations were found among the other elements in both production systems. The estimated daily intake for toxic elements based on Brazilian egg consumption did not exceed the toxicological reference values. The results clearly demonstrated that eggs are an important source of essential elements such as Mo, Fe, Se and Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号