首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
介绍了LF精炼热态渣在转炉炼钢厂的循环应用情况,分析对比精炼渣循环利用前后电极消耗、电量消耗、辅料消耗、脱硫能力、钢水回收量等生产数据后表明,精炼渣循环利用后的钢水回收量比原工艺多了1.175t/炉,电极消耗降低0.08kg/t,电耗降低7.7kW·h/t,石灰降低6.12kg/t,萤石降低1.65kg/t,同时促进了精炼快速成渣,缩短了精炼处理周期,保证了精炼钢水的质量。  相似文献   

2.
介绍了攀钢热态钢包铸余渣在转炉炼钢厂的循环应用情况,通过对转盘进行功能性改造,在转盘上实现了铸余渣的热态回收,铸余渣循环利用率达到24.1%;分析铸余渣循环利用前后的精炼处理时间、钢水质量、辅料消耗、连铸收得率等生产数据后表明,热态铸余渣循环利用后降低辅料消耗1.1kg/t,同时促进了精炼快速成渣,缩短了精炼处理时间,钢水质量稳定,降低成本4 302万元,取得良好的经济效益和社会效益。  相似文献   

3.
为实现“全三脱”工艺少渣冶炼,进一步降低辅料消耗,首钢京唐开发了热态脱硫渣、液态脱碳渣及铸余渣钢直接返回利用工艺。对热态渣、钢的可回收性进行了分析,并通过工业试验验证了工艺的应用效果。结果表明,回收利用5 t的脱硫渣,脱硫剂消耗可降低30%~40%,铁水温降相对减少10~15 ℃,总渣量减少30%~40%,同时可降低铁损,减少对环境的污染;对于脱碳渣,每炉回收热态渣20 t,可节约石灰3.2 t,若铁水硅质量分数小于0.15%,脱磷炉可不加石灰,钢铁料消耗相应减少2.4 kg/t,并且可取消萤石及轻烧的使用,可实现脱磷炉零辅料消耗;对于钢包铸余,通过控制高炉出铁量,将精炼工序RH/LF/CAS产生的热态精炼渣及钢包铸余兑入半钢包,连同半钢一起兑入脱碳炉中进行冶炼,铸余钢回包次数可达到6~8次,实现液态铸余直接回收。  相似文献   

4.
孟华栋  杨勇  姚同路 《中国冶金》2022,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

5.
孟华栋  杨勇  姚同路 《中国冶金》2006,32(7):107-113
为了达到节能降耗的目的,在转炉及KR进行钢包热态铸余渣循环利用的工艺试验。对比分析了转炉及KR循环利用钢包热态铸余渣前后的成渣效果和冶金效果。结果表明,在不需要对现有装备进行改造的情况下,常规炉次每炉加入约30 kg/t的钢包热态铸余渣,可节约消耗钢铁料12 kg/t、石灰4.31 kg/t、烧结矿4.87 kg/t、氧气1.83 m3/t,缩短冶炼时间3.24 min/炉,节省冶炼成本39.43 元/t(钢),降低终点a[O]含量,提高终点脱磷率,在提高钢水质量和冶炼效率、降低炼钢成本的同时,减轻了钢包铸余渣排放对环境的污染,经济效益和社会效益良好。为减小钢包铸余渣中硫含量高对转炉冶炼效果的影响,可采用将钢包热态铸余渣返回KR进行铁水预处理的方式加以循环利用,每罐铁水中加入约27 kg/t的钢包热态铸余渣后,石灰等脱硫剂用量减少82.2%,铁水预处理时间缩短1 min,温降减少4 ℃,回磷率降低2个百分点,脱硫率达到69.4%,同样取得了良好效果。  相似文献   

6.
介绍了攀钢热态铸余渣在转炉炼钢厂的循环应用情况,分析对比铸余渣循环利用前后辅料消耗、铸余渣回收率等生产数据后表明,回收热态铸余渣有利于降低钢铁料消耗,降低辅料消耗1.11kg/t钢,同时促进了精炼快速成渣,缩短了精炼处理时间,保证了精炼钢水的质量。  相似文献   

7.
为了实现精炼渣循环利用,分别对精炼渣样成分、精炼渣脱硫能力及精炼渣循环利用过程中对生产工艺的影响等进行了分析。结果表明,精炼渣循环3次以内,不会影响炉渣脱硫及钢包透气性,而且不会造成钢水的回硅、回磷。目前济钢第三炼钢厂精炼渣利用率45%以上,实现浇余回收0.6 t/炉,吨钢可降低石灰消耗3.5 kg、萤石消耗1.2 kg;LF炉处理时吨钢电耗约降低3 kW.h;降低了废渣排放,取得了显著的经济效益和社会效益。  相似文献   

8.
赵成林  张宁  朱晓雷  张维维  王丽娟 《钢铁》2015,50(12):110-113
 LF热态渣的循环利用可减少废渣排放,降低对环境的危害。对LF热态循环渣的脱硫能力及可回收性进行了分析,热态循环渣返回LF炉和转炉参与冶金反应后,可大幅降低渣料消耗,LF炉每罐回收热态循环渣1~1.5 t,平均节省石灰及其他助溶剂用量5 kg/t(钢),转炉每罐回收热态循环渣3~5 t,渣料消耗平均降低10~15 kg/t(钢)。采用热态循环渣配加石灰的LF炉造渣制度后,在相同的处理时间内,处理终点钢水中硫质量分数与常规处理几乎相同,同时节省了能源消耗,但必须考虑对钢水增硅、增锰的影响。热态循环渣返回转炉后导致入炉铁水温度低及吹炼过程渣量较大,因此转炉吹炼全程以低枪位操作更为适宜。在不影响生产组织的情况下,热态渣以返回转炉循环利用为最佳途径。  相似文献   

9.
通过对LF精炼炉热态钢渣循环利用的研究,认为热态钢渣综合利用后,脱硫率差别不大、精炼钢水的质量能够保证、减少了LF炉造渣料消耗、节省了电能和电极消耗。宣钢炼钢厂180 t转炉-LF精炼炉ER70S-6品种钢生产应用,LF精炼炉热态钢渣循环利用后,脱硫率降低2.07%、渣料消耗减少1 350kg、吨钢电耗降低7.53 kW.h,平均每炉回收余钢0.78 t,取得了较好效果。  相似文献   

10.
铸余渣是连铸浇注结束后残余在钢包内的钢水和炉渣,传统的铸余渣冷态回收法存在污染大、效率低、金属损耗大等缺点,铸余渣热态回收利用逐步受到重视。根据不同钢种的铸余渣特性,同时结合铁水中元素与铸余渣反应原理,确定了热态铸余渣返转炉利用的工艺路径:超低碳钢种的热态铸余渣返回时,向铁水包中倒入30~40 t铁水,承接2~3炉铸余渣,直接倒入转炉进行冶炼,吨钢石灰下降4.3 kg,脱磷率提高3.6%;其他钢种的热态铸余渣返回时,向铁水包中倒入60~70 t铁水,承接4~5炉铸余渣后返倒罐进行受铁,吨铁脱硫镁粉下降0.14 kg。该工艺的热态铸余渣返回转炉冶炼比例达到72.5%,有效地利用了铸余渣的冶金功效,钢铁料消耗从1 095 kg/t下降到1 090 kg/t,降低了5 kg/t,取得了显著的经济效益。  相似文献   

11.
首钢精炼82B、40Cr、20CrMnTi、60Si2Mn等钢种采用LF循环利用热态返回渣工艺。LF使用热态还原循环渣精炼特殊钢时,补加合成渣(或活性石灰)200~400kg/炉,适当增加电石消耗量,并用铝粒、电石、硅铁粉对渣脱氧。生产实践表明,采用该工艺使精炼脱硫率达到50%以上,LF后钢水氧活度≤10×10-6,并使LF造渣料-合成渣减少5kg/t,埋弧渣减少2kg/t,冶炼成本降低7元/t。热态精炼渣具有较高的回收利用价值。  相似文献   

12.
LF炉精炼后的钢渣仍含有一定量的硫,有再利用的价值;钢水浇铸后,减少钢包内的浇余可以提高金属收得率。通过对LF炉热态钢渣渣系及硫容量的分析,以Q345B钢为例,分别计算了钢渣循环利用三次时热态钢渣中硫容量和曼内斯曼指数的变化、热态钢渣循环利用对钢水脱硫和钢水升温等的影响。钢渣循环利用后,每炉钢可节约供电时间4~5 min,减少钢水浇余0.5~0.8 t,提高了金属收得率。  相似文献   

13.
张飞 《山东冶金》2014,(4):15-16
针对连铸机新开浇次前期钢水流动性较差问题,对新开浇次水口堵塞物检测分析,发现其主要原因是钢水温度高、钢水二次氧化严重、中包冲刷等。通过采取提高中包开浇时液面,增加前4炉精炼炉渣量、延长LF处理周期、制定连铸机开浇操作标准化等技术措施,有效地改善了新开浇次钢水流动性。  相似文献   

14.
100 t转炉LF精炼工艺的生产实践   总被引:2,自引:0,他引:2  
杜勇  彭家清  姬健营 《中国冶金》2006,16(8):17-19,33
介绍了安钢第一炼轧厂100tLF钢包精炼炉月产15万t生产能力下的精炼效果;分析了LF炉的造渣、脱硫、脱氧、氩气搅拌、钢液纯净度控制等工艺制度。实践表明,该工艺制度不但能满足年产150万t钢的生产需要,且能保证现生产品种的钢液质量。但要降低目标值,其工艺过程还需优化。  相似文献   

15.
邢钢一步法(脱磷站+60t AOD+60t LF)生产400系易切削不锈钢过程中,前期采用硫铁全部在AOD出钢时加入配[S],AOD出钢至上机浇铸过程中钢渣碱度始终处于低碱度范围(R=1.40~1.95),硫铁消耗较大,钢液氧含量偏高,随着冶炼炉数的增加,炉衬侵蚀严重,影响AOD炉龄和钢坯质量,且钢渣较长时间处于低碱度状态,极易造成钢中[C]含量的上升(尤其是430F、430FR低碳类钢种),很难实现多炉连浇。后期通过优化硫铁加入方式,在LF后期加硫铁,AOD炉渣碱度2.0~2.3,LF炉渣碱度1.6~2.0,缩短低碱度渣处理时间,降低[S]损耗和钢液氧含量及对炉衬侵蚀。使易切削不锈钢[S]的收得率由62%提高到75%,吨钢硫铁消耗下降2.12 kg,铸坯皮下气泡等缺陷得到控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号