共查询到17条相似文献,搜索用时 62 毫秒
1.
共轭梯度法是求解大规模无约束优化问题的一种有效方法。针对算法的优劣主要依赖于步长 因子和搜索方向的特点,结合共轭梯度法的共轭性质,提出一种改进的可以控制步长因子的共轭梯度算 法。在建立算法的几个重要引理和全局收敛性定理后分别给出了证明。最后对算法进行了数值实验,实 验结果表明算法具有良好的收敛性和有效性。 相似文献
2.
修正HS共轭梯度法的全局收敛性 总被引:1,自引:0,他引:1
针对PRP方法对一般的非凸函数在强Wolfe线性搜索条件下不收敛这一不足,给出了一种新的共轭梯度算法.在强Wolfe线性搜索下,所给公式满足充分下降条件,并在适当条件下证明了算法的全局收敛性. 相似文献
3.
共轭梯度法是求解非线性优化问题的一种重要方法.通过对共轭梯度法及其全局收敛性的分析,提出一个新的非线性共轭梯度公式,采用该公式和Wolfe非精确线搜索的方法是全局收敛的.文末的数值实验验证了算法是有效的. 相似文献
4.
共轭梯度法是一类解决无约束优化问题的有效方法,尤其适用于大规模优化问题的求解。提出一族包含DY方法的新的共轭梯度法,并证明了该算法在Wolfe线搜索条件下具有全局收敛性,数值结果表明该算法是有效的。 相似文献
5.
针对许多共轭梯度算法的充分下降性都依赖于线搜索过程这一不足,给出了一个新的共轭梯度算法,并在步长搜索满足Zoutendijk条件下证明了算法的全局收敛性. 相似文献
6.
为解决大规模无约束优化问题,基于Wolfe线搜索技术,提出新的修正HS共轭梯度法。在水平集有界和梯度Lipschitz连续的条件下,证明新算法具有全局收敛性。数值实验证实此算法有效可行。 相似文献
7.
共轭梯度法是求解非线性优化问题的一种重要方法,尤其适用于大规模优化问题的求解。提出一个新的非线性共轭梯度公式,采用该公式和Wolfe非精确线搜索的方法,使之全局收敛。经数值实验验证该算法是有效的。 相似文献
8.
一种新共轭梯度法的全局收敛性 总被引:1,自引:0,他引:1
对求解无约束最优化问题的共轭梯度法进行了研究,提出了计算βk的一种新的公式,并对标准Wolfe搜索条件进行了推广,得到一种新的共轭梯度法。在一定条件下证明了该算法的全局收敛性,同时给出了一些数值例子,得到很好的数值结果。 相似文献
9.
董晓亮 《桂林电子科技大学学报》2011,31(4):334-337
指出了文献[10]中两类共轭梯度法的错误证明,提出了Wolfe搜索下一类以DY公式为上界的广义共轭梯度法,该算法在每一步不依赖于任何搜索自行产生充分下降方向,在适当的条件下证明了算法的全局收敛性. 相似文献
10.
优化算法研究,主要工作是给迭代点寻求可接受且有效的步长及可行的下降方向.在求解大规模无约束优化问题时,共轭梯度法被广泛应用.其中, Polak-Ribiere-Polyak方法 (简称:PRP方法)是众多共轭梯度法中数值表现相对较好的,但它在许多线搜索下并不具备全局收敛性,如何发挥PRP方法数值优良,而克服其收敛性差,是学者们致力探索的热点课题.本文提出新的PRP参数公式,并对Armijo线搜索方法进行修正,建立了新Armijo线搜索下的PRP共轭梯度算法,证明算法满足充分下降条件,并证明算法在适当条件下具有全局收敛性. 相似文献
11.
马琳元 《上海第二工业大学学报》2011,28(1):18-25
共轭梯度法被广泛应用于求解无约束条件的最优化问题,尤其是一些大型最优化问题。近年来,很多学者在诸如FR,PRP,HS等经典方法的基础上,进行加工和改进,以提高共轭梯度法数值计算的效果。例如,基于Dai和Liao等人提出的一种新拟牛顿方程,Li,Tang和Wei构造出新的共轭条件,从而提出了一种新的共轭梯度法。这种方法既具有收敛性又得到更好的计算结果。另一方面,Hager和H Zhang也构造了一种新的单参数共轭梯度法。本文在这些方法的基础之上,给出了一种新共轭梯度法的计算公式,并在强凸条件下证明了其全局收敛性。此外,其数值计算的结果也是令人满意的。 相似文献
12.
研究求解无约束最优化问题的共轭梯度法,提出了一种新的共轭梯度类型公式,从而影响了算法产生的搜索方向,进一步影响了算法的效果,得到一类新共轭梯度法,证明了在Grippo-Lucidi线搜索下新共轭梯度法的全局收敛性. 相似文献
13.
通过对不同共轭梯度法收敛性分析的研究,提出了共轭梯度法全局收敛的一个充分条件,分析了该充分条件的合理性,并给出一种带参数的混合共轭梯度法,证明了该方法在强Wolfe线搜索下满足该充分条件.数值实验结果表明:该算法是有效的. 相似文献
14.
提出了一种搜索方向带扰动项的修正PRP共轭梯度法。在主方向充分下降的情况下,证明采用强wolfe搜索时,算法是全局收敛的。最后给出了初步的数值试验结果。 相似文献
15.
基于Hager-Zhang提出的共轭梯度法,构造了一种新的谱风,证明了该方法不依赖于任何线搜索就具有充分下降性,并且在Armijo搜索下证明了算法的全局收敛性。数值试验表明,该方法明显优于谱DY、谱FR、谱PRP算法。 相似文献
16.
在WYL共轭梯度法的基础上,提出了一种新的谱共轭梯度法,并且证明了该方法在Armijo线搜索下具有充分下降性和全局收敛性.数值试验表明该方法是有效的。 相似文献
17.
自从非单调线搜索技巧引入非线性优化后,所得的算法得到了成功的应用与扩展。带记忆的梯度方法经常用来求解无约束优化问题,尤其是大规模的问题。将带记忆梯度法与Wolfe非单调线搜索技巧成功融合到一起得到了新算法。证明了该算法全局收敛。 相似文献