共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
针对现有的多尺度道路网相似性计算方法对道路网特征顾及不足的问题,提出了一种顾及全局轮廓和局部细节的多特征多尺度道路网空间相似性计算模型。该模型首先提取道路网的全局轮廓边界,通过傅里叶描述子计算出轮廓边的形状相似性,以此来度量多尺度道路网的全局相似性;其次,将能够反映局部密度特征的道路网眼引入到局部相似性计算中,分别求取网眼之间的拓扑相似度和几何相似度,二者结合计算多尺度道路网的局部相似性;最后,进行全局特征和局部特征的相似性归一化,对多尺度道路网目标相似性进行整体度量。实验结果表明,该模型计算结果与实际地物特征变化程度保持了较高的一致性,比较符合人类认知。 相似文献
3.
为解决同一地物数据被重复采集而导致的数据二义性问题,综合不同来源数据的点位精度差异的影响,提出一种基于多评价因素的面状要素合并变换算法.首先分析确定影响合并变换的三大主要评价因素,通过熵法决定其重要性,并将其综合来确定要素的可信度;然后根据离散Fréchet距离识别同名面状要素上的同名点对,进而使用位置加权平均来获得合并变换后的位置.结合海陆图的部分面状要素对该算法进行检验的结果表明,其提高了面状要素的空间位置合并变换质量. 相似文献
5.
为使地图标注中简单面状要素的自动注记更加美观且高效,提出了一套简单面状要素的注记方案.该方案先用重心法试着将文本标注在重心附近,但当重心法不能将文本标注于多边形内部时,则用改进的Delaunay三角网骨架线法将文本顺着骨架线标注,以适应绝大多数多边形.重心法以O(n)的效率快速标注文本,而改进的三角网建网算法提高了建网效率,保证了骨架线方法的可行性.实验结果表明:该方案注记视觉效果良好,注记效率高. 相似文献
6.
在卷积神经网络模型中,空间金字塔池化方法将空间信息融入到深度特征的生成过程中,最终生成的图像表示可以有效地用于提高图像检索性能,但是此方法会导致生成的图像表示中不同维度之间描述的信息存在重复且相同维度描述的图像内容不匹配。为此提出了一种基于多尺度特征映射匹配(multi-scale feature map matching,MFMM)的图像表示方法,此方法首先利用深度特征的方差与协方差矩阵提出了一种特征映射选择算法,用于增强图像表示中不同维度特征的独立性。其次,依据相同通道特征映射中高响应值位置有较高匹配性的特点,结合激活映射中最大响应位置的深度特征提出了一种优化的特征映射中心点选择方法。最后,按照不同的中心点通过多尺度窗口采样的方式,从特征映射中提取出带有空间信息的深度特征用于表示图像内容。实验结果表明,提出的方法在图像检索任务中能够取得良好的效果。 相似文献
7.
8.
在体绘制中传递函数将体数据转换成光学参数,因此体绘制的效果直接由传递函数决定.本文提出了基于多尺度等值面设计传递函数的高效方法.该方法通过梯度阈值提取边界体元来简化数据场,然后将提取等值面的目标函数的计算化简为累加的拉普拉斯加权的直方图极值的计算.最后对直方图进行多尺度平滑,利用提取出的多尺度等值面来设计高斯型传递函数,提高了等值面的准确度和传递函数的设计效率. 相似文献
9.
针对现有车牌字符分割算法和识别问题的分析,本文采用一种多尺度模板匹配的车牌字符分割算法;并在此分割基础上采用小波神经网络算法识别车牌字符。实验表明该分割与识别方法的结合实现了切分准确、鲁棒性强、去伪性好和快速准确识别的高效性。 相似文献
10.
一种基于多尺度轮廓点空间关系特征的形状匹配方法 总被引:1,自引:0,他引:1
针对使用三角形区域表示描述子对相似形状进行匹配时,对微小形变比较敏感 以及区分剧烈变化的不相似形状时判别能力较弱的问题, 提出一种结合轮廓点空间关系特征的多尺度形状特征描述子.通过分析不同尺度下参考点与其他采样点之间的位置关系, 利用对应角度信息来对形状进行表示, 并在此基础上构造出一种新的形状特征描述子.本文所提特征提取方法能对形状的局部及全局信息更准确地描述, 具有较好的鲁棒性和判别能力.在形状特征匹配阶段, 利用轮廓点集顺序关系已知这一优势, 引入动态规划及形状复杂度分析的方法,分析形状间的匹配结果, 能够得到较好的形状匹配精度.通过对不同形状数据集行仿真实验, 证明本文方法能够有效地实现形状识别和检索. 相似文献
11.
利用AI(artificial intelligence)技术可从遥感影像上快速提取矢量数据,尤其可以获取实时性较好的矢量路网数据,但提取的数据没有属性信息;而已有的众源数据如OSM(open street map)路网具有开源、属性信息丰富等特点,但现势性相对于提取路网较低.针对上述情况,以AI提取路网为基准数据,OSM路网为匹配数据,将一种基于多因子几何匹配算法用于路网匹配中,并在匹配后引入匹配度的概念,以最优匹配对象进行属性重建.实验结果表明能有效地对AI提取路网的属性信息进行重建,并基于此开发了一套路网属性信息重建系统,在国家全球测图项目中投入使用. 相似文献
12.
为了改善机器人、无人驾驶领域采用深度神经网络实现双目视觉立体匹配存在参数量大、GPU资源成本高的问题,提出一种多尺度聚合的立体匹配方法。首先设计一个结合多尺度的特征提取网络,利用空洞卷积在不改变分辨率下获得更为丰富的特征,引入注意力机制,再将不同分辨率下特征交叉融合以完善特征信息;其次,改变代价卷获取方式,在低尺度下聚合得到代价卷,不断结合高尺度相似信息以迭代更新,将多个代价卷进行交叉融合以得到最终代价卷;最后,结合注意力机制的精细化模块修正初始视差图中的异常值与不连续区域,得到最终视差图。实验结果表明,该算法能够在较低参数量,以及低成本GPU资源下运行,且获得较好的匹配精度。 相似文献
13.
为提升在复杂环境下智能物流分拣系统中条形码检测的精度和速度,提出一种基于多尺度特征的条形码快速检测算法。采用深度学习中主流one-stage目标检测器作为基础框架,通过级联不同特征融合层和压缩层实现语义信息充分提取,在不同特征提取层分别嵌入膨胀卷积和深度可分离卷积,对特征提取效果和速度进行有效优化提升。将算法应用于实际分拣现场数据进行测试分析,与已有的YoLo-v3和Vgg-SSD网络等进行对比,该算法在准确度和速度方面具有明显优势,能够较好解决实际应用问题。 相似文献
14.
目的 传统显著性检测模型大多利用手工选择的中低层特征和先验信息进行物体检测,其准确率和召回率较低,随着深度卷积神经网络的兴起,显著性检测得以快速发展。然而,现有显著性方法仍存在共性缺点,难以在复杂图像中均匀地突显整个物体的明确边界和内部区域,主要原因是缺乏足够且丰富的特征用于检测。方法 在VGG(visual geometry group)模型的基础上进行改进,去掉最后的全连接层,采用跳层连接的方式用于像素级别的显著性预测,可以有效结合来自卷积神经网络不同卷积层的多尺度信息。此外,它能够在数据驱动的框架中结合高级语义信息和低层细节信息。为了有效地保留物体边界和内部区域的统一,采用全连接的条件随机场(conditional random field,CRF)模型对得到的显著性特征图进行调整。结果 本文在6个广泛使用的公开数据集DUT-OMRON(Dalian University of Technology and OMRON Corporation)、ECSSD(extended complex scene saliency dataset)、SED2(segmentation evalution database 2)、HKU、PASCAL-S和SOD(salient objects dataset)上进行了测试,并就准确率—召回率(precision-recall,PR)曲线、F测度值(F-measure)、最大F测度值、加权F测度值和均方误差(mean absolute error,MAE)等性能评估指标与14种最先进且具有代表性的方法进行比较。结果显示,本文方法在6个数据集上的F测度值分别为0.696、0.876、0.797、0.868、0.772和0.785;最大F测度值分别为0.747、0.899、0.859、0.889、0.814和0.833;加权F测度值分别为0.656、0.854、0.772、0.844、0.732和0.762;MAE值分别为0.074、0.061、0.093、0.049、0.099和0.124。无论是前景和背景颜色相似的图像集,还是多物体的复杂图像集,本文方法的各项性能均接近最新研究成果,且优于大多数具有代表性的方法。结论 本文方法对各种场景的图像显著性检测都具有较强的鲁棒性,同时可以使显著性物体的边界和内部区域更均匀,检测结果更准确。 相似文献
15.
现有主流的利用预训练卷积神经网络提取图像特征的方法存在仅使用单层预训练特征表征图像和预训练任务与实际研究任务不一致的问题,使得现有图文匹配方法无法充分利用图像特征,极易受到噪声特征干扰。针对上述问题,使用了预训练网络中的多层特征,并提出了多层次图像特征融合算法。在图文匹配的学习目标指导下,利用多层感知机(multi-layer perceptron)有监督地融合和降维多层次的预训练图像特征,生成融合图像特征,从而充分利用预训练特征,减少噪声干扰。实验结果表明,提出的融合算法可实现对预训练的图像特征更有效的利用,相比于使用单层次特征的方法能获得更好的图文匹配效果。 相似文献
16.
基于多尺度注意力机制的高分辨率网络人体姿态估计 总被引:1,自引:0,他引:1
针对人体姿态估计中面对特征图尺度变化的挑战时难以预测人体的正确姿势,提出了一种基于多尺度注意力机制的高分辨率网络MSANet(multiscale-attention net)以提高人体姿态估计的检测精度。引入轻量级的金字塔卷积和注意力特征融合以更高效地完成多尺度信息的提取;在并行子网的融合中引用自转换器模块进行特征增强,获取全局特征;在输出阶段中将各层的特征使用自适应空间特征融合策略进行融合后作为最后的输出,更充分地获取高层特征的语义信息和底层特征的细粒度特征,以推断不可见点和被遮挡的关键点。在公开数据集 COCO2017上进行测试,实验结果表明,该方法比基础网络HRNet的估计精度提升了4.2%。 相似文献
17.
卷积神经网络因为其强大的学习能力,已经在语义分割任务中取得了显著的效果,但是如何有效地利用网络在浅层次的视觉特征和深层次的语义特征一直是研究的热点,以此为出发点,提出了一种融合多级特征信息的图像语义分割方法。通过空洞卷积提取各层级的特征,并不断迭代深层特征来丰富低级视觉信息,最后与高级语义特征合并融合,得到精细的语义分割结果。实验在PASCAL VOC 2012数据集上与主流的五种方法进行了比较,在GTX1080Ti的环境下该方法与其中性能第二的模型mIoU(mean intersection-over-union)值相比提高了2.1%,与其中性能第一的模型mIoU值仅相差0.4%,表明该方法能有效利用多层级的特征信息,实现了图像语义分割的目的。 相似文献
18.
现有的基于道路网络对象聚类算法eb-cls采用网络距离描述移动对象间的相似性,没有充分利用对象的时间和空间属性,造成算法不能体现移动对象动态演化的移动模式,频繁更新聚类结果并且聚类精度不理想,执行效率低等问题。针对这些不足,提出基于道路网络的移动对象聚类算法MOBORN(Moving Objects Based on Road Network),该算法引入时空相似系数,考虑了移动对象速度、方向和位置。当移动对象间的时空相似系数达到给定阈值,将其分到同一聚类,并动态维护聚类结果,减少聚类次数。实验结果证明,与eb-cls算法相比,该算法聚类精度保持在97%以上,运行效率提高了40%。 相似文献
19.
针对多尺度生成式对抗网络图像修复算法(MGANII)在修复图像过程中训练不稳定、修复图像的结构一致性差以及细节和纹理不足等问题,提出了一种基于多特征融合的多尺度生成对抗网络的图像修复算法。首先,针对结构一致性差以及细节和纹理不足的问题,在传统的生成器中引入多特征融合模块(MFFM),并且引入了一个基于感知的特征重构损失函数来提高扩张卷积网络的特征提取能力,从而改善修复图像的细节性和纹理特征;然后,在局部判别器中引入了一个基于感知的特征匹配损失函数来提升判别器的鉴别能力,从而增强了修复图像的结构一致性;最后,在对抗损失函数中引入风险惩罚项来满足利普希茨连续条件,使得网络在训练过程中能快速稳定地收敛。在CelebA数据集上,所提的多特征融合的图像修复算法与MANGII相比能快速收敛,同时所提算法所修复图像的峰值信噪比(PSNR)、结构相似性(SSIM)比基线算法所修复图像分别提高了0.45%~8.67%和0.88%~8.06%,而Frechet Inception距离得分(FID)比基线算法所修复图像降低了36.01%~46.97%。实验结果表明,所提算法的修复性能优于基线算法。 相似文献
20.
针对传统基于互信息图像匹配算法计算量大,且没有考虑像素空间关系和效用的问题,提出了一种基于定量定性互信息的多层次特征图像匹配算法:首先对边缘提取后的图像提取多层次特征,即边缘兴趣点、边缘点和边缘邻域点特征;然后基于不同特征点特性,计算定量定性互信息联合效用;最后在遗传算法框架下,将定量定性互信息值作为适应度函数值搜索匹配参数。仿真结果表明,本文提出的匹配算法精度高,耗时较短且对噪声不敏感。 相似文献