首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
针对传统算法在眼底视网膜血管分割过程中存在特征提取困难、细节区域分割不精确的问题,本文在U-Net网络的基础上进行改进,提出了一种能更好进行血管分割的算法CSD-UNet。首先,在编码和解码阶段使用了卷积注意力模块,通过引入注意力机制对血管的细微结构进行通道和空间增强;其次,采用了SoftPool的池化方法,保证在下采样阶段保留更多原始信息,增加感受野;最后,选择密集上采样卷积作为本算法的上采样方法,产生像素级预测且捕获更多细节信息。在公开数据集DRIVE、CHASE_DB1上验证该算法,结果表明,该算法较现有的先进算法在分割效果上有一定的提升。  相似文献   

2.
张丽娟  梅畅  李超然  章润 《红外技术》2021,131(12):1222-1227,1233
在眼科疾病的诊断中,对视网膜血管进行分割是非常有效的一种方法。在方法使用中,经常会遇到由于视网膜血管背景对比度低及血管末梢细节复杂导致的血管分割难度较大的问题,通过在设计网络的过程中在基础U-net网络中引入残差学习,注意力机制等模块,并将两者巧妙地结合在一起,提出一种新型的基于U-net的RAU-net视网膜血管图像分割算法。首先,在网络的编码器阶段加入残差模块,解决了模型网络加深导致梯度爆炸以及梯度消失的问题。其次,在网络的解码器阶段引入注意力门(attention gate, AU)模块,用来抑制不必要的特征,从而使模型产生更高的精度。通过在DRIVE数据集上进行验证,该算法的准确率、灵敏度、特异性和F1-score分别达到了0.7832,0.9815,0.9568和0.8192。分割效果相对于普通监督学习算法较为良好。  相似文献   

3.
眼底视网膜血管的分割能够更有效地帮助医生诊断病情,但人工诊断费时耗力,传统的眼底图像血管分割技术的准确率和精度又不能达到理想状态,因此提出了基于R2U-Net的多尺度特征融合注意力网络——R2MAFF-Net.为了解决U-Net深度不够、上下层之间特征连接不密切及信息获取不完全等问题,将循环残差空洞卷积结构作为模型的编...  相似文献   

4.
针对视网膜血管分割中有标签图像数据有限、血管结构复杂尺度不一且易受病变区域干扰等问题,提出一种多尺度密集注意力网络用于视网膜血管分割。首先,以U-Net架构为基础,引入并行空间和通道挤压激励注意力密集块(scSE-DB)代替传统卷积层,加强特征传播能力,实现了对特征信息的双重校准,使模型能更好地识别血管像素;其次,在网络底端嵌入级联空洞卷积模块,以捕获多尺度血管特征信息,提升网络获取深层语义特征的能力;最后,在公共数据集DRIVE、CHASE_DB1和STARE上进行实验,所提网络的准确率分别为96.50%、96.62%和96.75%,灵敏度分别为84.17%、83.34%和80.39%,特异性分别为98.22%、97.95%和98.67%。所提网络的整体分割性能优于现有多数先进算法。  相似文献   

5.
6.
7.
在眼科疾病的诊断中,对视网膜血管进行分割是非常有效的一种方法。在方法使用中,经常会遇到由于视网膜血管背景对比度低及血管末梢细节复杂导致的血管分割难度较大的问题,通过在设计网络的过程中在基础U-net网络中引入残差学习,注意力机制等模块,并将两者巧妙地结合在一起,提出一种新型的基于U-net的RAU-net视网膜血管图像分割算法。首先,在网络的编码器阶段加入残差模块,解决了模型网络加深导致梯度爆炸以及梯度消失的问题。其次,在网络的解码器阶段引入注意力门(attention gate, AU)模块,用来抑制不必要的特征,从而使模型产生更高的精度。通过在DRIVE数据集上进行验证,该算法的准确率、灵敏度、特异性和F1-score分别达到了0.7832,0.9815,0.9568和0.8192。分割效果相对于普通监督学习算法较为良好。  相似文献   

8.
9.
彩色眼底图像的视网膜血管分析可以帮助医生诊断许多眼科和全身性疾病,具有十分重要的临床意义。为进一步提高视网膜血管的分割效果,文章提出一个基于注意力U-Net网络的视网膜血管分割方法,该方法使用U-Net结合通道注意力机制以提高分割准确率,在公开数据集DRIVE的灵敏度、特异性和准确率分别为0.772 6,0.984 7和0.966 0,优于现有的许多方法。  相似文献   

10.
视网膜血管的精准分割是辅助眼科医生诊断和大规模眼科疾病自动筛查的重要前提,已成为临床的迫切需求。针对现有视网膜细小血管分割不足以及精确度有待提高等问题,提出了一种融合通道注意力机制与残差密集连接模块的改进型U-Net算法,先利用通道注意机制来增强网络的识别能力,再利用残差密集模块代替传统的卷积模块来提升网络分割细小血管的性能。在DRIVE和CHASE数据集上的实验结果表明,与其他算法相比,该算法的ACC、SE、SP和AUC值均比较高,分割效果较好。  相似文献   

11.
结肠镜图像中息肉的精确分割是诊断结肠癌的关键环节,针对目前结肠息肉分割算法存在孔洞、分割粗糙以及分割不完全的问题,提出了一种改进级联U-Net结构的结肠息肉分割算法。运用特征融合思想,设计了多尺度语义嵌入模块和残差模块,充分利用深、浅层特征的语义信息。引入注意力机制,在模型的级联处构建了改进空洞卷积模块,扩大卷积感受野并增强特征捕获能力。改进了卷积层模块和分割损失函数,提升模型的泛化性和鲁棒性。在Kvasir-SEG数据集上进行实验分析,相似系数、平均交并比、召回率和准确率分别达到了90.39%、88.34%、83.62%和95.12%。实验结果表明,该文所提算法改善了分割图像内部孔洞、边缘粗糙及分割不完全的问题,优于其他息肉分割算法。  相似文献   

12.
乳腺细胞的准确分割是乳腺组织切片图像病理分析的关键环节,对乳腺癌的诊治具有重要价值.针对乳腺细胞图像分割中细胞边界不清晰、分割准确率低的问题,提出一种基于空洞U-Net网络的乳腺细胞图像分割算法.在U-Net网络中引入空洞卷积增大卷积层感受野,获得包含更多乳腺细胞边缘信息的特征图,在卷积层和池化层间增加实例归一化层,提...  相似文献   

13.
MS-UNet++:基于改进UNet++的视网膜血管分割   总被引:1,自引:0,他引:1  
本文针对视网膜图像中细微血管特征提取困难导致其分割难度高等问题,提出了一种 基于端到端的神经网络嵌套视网膜血管分割模型算法(简称MS-UNet++),该算法选取了深度监督网络UNet++作为分割网络模型,提升特征的使用效率;引入MulitRes模块,改善低对比度环境下细小血管的特征学习效果,并在特征提取后加上SENet模块进行挤压和激励操作,从而增强特征提取阶段的感受野,提高目标相关特征通道的权重。基于DRIVE图像数据集的实验结果表明,该算法分割结果与真实结果之间的重叠率DICE值为83.64%,并交比IOU为94.83%,准确度ACC为96.79%,灵敏度SE为81.78%,较现有模型有一定的提升,可用于视网膜图像血管分割,为临床诊断提供辅助信息。  相似文献   

14.
针对现有的视网膜血管分割方法存在对微血管和毛细血管的分割能力不足,导致血管断连和末端血管漏分,造成视网膜血管分割性能不佳的问题,本文提出一种基于多尺度一致性与注意力机制的视网膜血管分割网络(multi-scale consistency and attention mechanism U-Net, MCAU-Net)。首先,该网络在瓶颈特征层嵌入注意力细化模块(attention refinement module, ARM),能有效细化瓶颈层冗余的特征,抑制背景等无关像素的权值。其次,将上下文特征融合模块(context fusion module, CFM)与传统的跳跃连接相结合,以此补充在特征提取过程中逐渐丢失的信息,加强网络对微血管和毛细血管的构建能力。最后,基于网络的多尺度输出设计了一种多尺度一致性的训练方式,以增强网络对不同尺度特征的敏感性。在DRIVE和CHASE_DB1公开数据集上进行的对比实验表明本文网络具有良好的分割性能。  相似文献   

15.
张润谷 《激光杂志》2020,41(2):194-198
视网膜血管的形态结构信息可以为糖尿病、高血压等疾病提供诊断依据。提出了一种基于多尺度多路径的全卷积神经网络的视网膜血管分割方法。首先,利用空洞卷积代替池化层和上采样操作,在不增加参数的情况下增加感受野,避免了细节信息的丢失;其次,通过使用不同空洞率的空洞卷积实现图像数据的多尺度特征提取,充分学习图像的多尺度特征,避免网络过深,并提升了细小血管的提取能力;同时,利用跳层结构在网络中建立多条信息流通路径,通过多路径信息流充分传递多尺度特征信息,提高网络预测效果。实验结果表明,该算法在DRIVE数据集上的平均准确度、灵敏度和特异性分别为95. 46%、81. 24%、97. 77%,取得了较好的视网膜血管的分割效果。  相似文献   

16.
针对多数视网膜血管提取算法实时性不强和分割 精度不高的问题,提出了一种基于可控图像分割的 快速视网膜血管提取算法。首先,对视网膜G分量图像的灰 度进行反转和自适应直方图均衡化,应用结 构元素为“菱形”和“圆盘形”的形态学“开”运算平滑图像背景和增强血管对比度,消除 视盘后阈值分割并二值 化得到不含视盘的分割图像。其次,根据在灰度图像中检测到的视盘构建掩膜,再次对 视网膜绿色分 量图像自适应直方图均衡化后进行阈值分割,并和掩膜进行逻辑“与”运算得到含有掩膜的 分割图像。最后, 将不含视盘的分割图像与含有掩膜的分割图像进行逻辑“与”运算,并融合边界信息获得最 终的视网膜血管 结构。实验结果表明,本文算法能有效提取视网膜眼底图像的血管网络,有较强的实时性和 较高的分割精度。  相似文献   

17.
视网膜血管的分割精确率对眼科疾病和糖尿病早期诊断有着重要影响。面对现有方法在微血管与病变区域分割性能差的问题,本文提出一种强化提取血管特征的分割模型。该模型在编码部位引入多尺度特征提取残差模块(multi-scale feature extraction residual module,MFE-residual) 和多级残差空洞卷积层,用来扩展感受野,学习多层次图像特征,提高模型对血管信息的利用率;下采样和短连接部位分别融入轻量化注意力机制和多通道注意力模块,增加模型对血管的识别度,降低误分割的可能性。本文基于DRIVE和STARE两种公开数据集进行了实验,来验证改 进模型的分割能力。结果表明,两种数据上的准确率分别为0.965 2和0.971 5,灵敏度分别为0.820 5和0.825 6,与其他算法相比,分割性能更有优势。  相似文献   

18.
一种基于改进的PCNN的视网膜血管树提取方法   总被引:1,自引:1,他引:1  
根据脉冲耦合神经网络(PCNN)动态点火特性和视网膜血管网络区域结构特征,提出了一种基于改进型PCNN(IPCNN)的视网膜血管树提取方法。该方法对二维高斯匹配滤波预处理增强后的眼底图像运用IPCNN分割出增强图像的血管网络,然后对分割得到的血管网络结合区域连通性特征,采用长度滤波算子滤除噪声,提取出最终的血管树。通过...  相似文献   

19.
针对视网膜血管分割中存在的细小血管像素模糊以及血管断裂的问题,本文提出一种改进的密集U型网络(dense residual U-shaped network,DRU-Net)。首先,结合残差结构和密集连接的优点提出了密集残差模块,并用其构建DRU-Net网络的编码层和解码层,充分提取目标特征;然后在网络底部添加由空洞卷积搭建的多路特征蒸馏模块(multi-characteristic distillation block,MCDB) ,提取不同尺度的图像特征信息;最后在网络的跳跃连接处引入双向卷积长短期记忆模块(bidirectional convolutional long and short-term memory,BConv LSTM) ,充分融合浅层和深层的特征 信息,输出完整的血管图。在公开的数据集DRIVE和CHASE_DB1上进行实验,分别取得了 0.966 9和0.976 4的准确度,同时AUC(area under curve)分别达到了0.983 9和0.986 7,证明网络具有较好的分割效果,拥有一定的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号