共查询到17条相似文献,搜索用时 70 毫秒
1.
油田采油过程中会产生大量含有丰富无机盐资源的油田水,油田水中除含有大量钠、钾、镁等离子外,还富集有多种微量元素如锂、铷等离子。将油田水中富含的锂资源回收利用,不仅避免了油田水直接排放造成的环境污染,还对资源的最大化利用和可持续发展具有重要意义。以某油田水为原料,采用蒸发浓缩、有机相去除、冷冻-芒硝兑卤复合工艺除钙,得到初级油田水;然后分别采用化学法和吸附法进一步对初级油田水进行除钙、镁,得到原料油田水;最后将原料油田水与碳酸钠溶液反应,制备电池级碳酸锂。实验结果表明:化学法和吸附法都能很好地去除油田水中的钙、镁离子;采用化学法和吸附法制备的原料油田水与纯碱溶液反应制备的碳酸锂产品,其纯度都在99.7%以上,其中杂质离子的含量满足电池级碳酸锂的要求。该方法成功实现了油田水中锂资源的回收利用。 相似文献
2.
以盐湖卤水氯化锂溶液与碳酸钠溶液反应结晶制备电池级碳酸锂,由于反应条件、杂质离子、搅拌速度等的影响,生产出的碳酸锂品质不符合行业标准。通过对反应条件中高锂液的锂钠摩尔比、反应温度、搅拌速度、杂志离子等的影响研究,得出复杂盐湖卤水体系制备电池级碳酸锂工艺的最佳控制条件,即Li+/Na+物质的量比约为5. 5,反应温度为70℃,搅拌速度为400r/min,碳酸钠摩尔浓度为2. 45mol/L,主要杂质离子B含量小于10mg/L,加料方式为碳酸钠溶液加入到氯化锂盐水体系当中,从而得到的碳酸锂纯度≥99. 5%,符合电池级碳酸锂标准。 相似文献
3.
4.
随着电池行业的快速发展,电池级碳酸锂的市场需求越来越大。以某公司生产电池的含锂工业废料为原料,采用碳化分解法对其进行提纯除杂,并进行多次滤液滤饼循环,最终得到符合电池级碳酸锂行业标准的产品。碳化过程优化反应条件:固液质量体积比(g/mL)为1∶50,搅拌转速为300 r/min,二氧化碳流速为10 L/min,反应温度为20 ℃,反应时间为60 min。热分解过程优化反应条件:搅拌转速为300 r/min,反应温度为95 ℃,反应时间为60 min。将碳化分解制备的碳酸锂滤饼和滤液进行5次循环反应,即可得到符合电池级碳酸锂行业标准的产品。所得碳酸锂产品纯度达到99.71%,而且其中镁、钙、钾质量分数分别降低至0.005 3%、0.005 0%、0.000 9%,产品收率保持在55%以上,产品形貌呈棒状、大小均匀、分散性良好。 相似文献
5.
碳化法因具有反应高效、工艺简单等特点,已成为电池级碳酸锂生产的主流工艺。但是,在以盐湖锂精矿为原料采用碳化法制备电池级碳酸锂的过程中,还存在碳化过程二氧化碳利用率低、碳化液杂质去除效果不好以及锂的收率低等问题。以盐湖锂精矿为原料,从碳化、净化、热解3个主要环节进行了工艺优化实验,即由常压碳化改为加压碳化、采用化学净化和离子交换树脂吸附相结合的方法去除碳化液中的杂质、由常规热解改为加压热解,可将碳化过程二氧化碳利用率提高到87.4%、净化过程钙镁去除率分别提高到97.92%和96.09% 、全流程锂的直收率提高到82.27%。 相似文献
6.
荧光级磷酸锂的制备工艺研究 总被引:1,自引:0,他引:1
采用氢氧化锂与磷酸中和反应制得磷酸锂。原料中杂质含量直接关系到最终产品的质量,尤其是氢氧化锂中钙是首先要解决的问题。从合成方法、脱钙剂的选择、工艺条件(温度、搅拌强度、陈化条件、合成条件等)对磷酸锂产品的质量影响进行了探讨。该工艺不仅适合荧光级磷酸锂的生产,也适合于提高原料氢氧化锂的品级要求。工业级氢氧化锂含钙质量分数通常在5×10-6-7×10-6,脱钙后的氢氧化锂含钙质量分数可降至1×10-6以下,合成后产品磷酸锂中含钙质量分数完全满足要求。 相似文献
7.
黄雯婷 《中国石油和化工标准与质量》2023,(18):35-37
伴随着社会工业的进步发展,碳酸锂在工业生产中的应用范围也就越来越广泛,实际的需求量也在不断的增加,为电池级碳酸锂带来了很大的发展机遇,作为新能源行业生产原料的高纯碳酸锂的需求也在不断的增加,同时,对其质量的要求也不断上升。文章就电池级碳酸锂的概念、电池级碳酸锂的生产工艺流程以及碳酸锂的精制方法进行了深入分析,在此基础上,进一步论述了电池级碳酸锂生产及应用,为我国工业产业发展提供保障。 相似文献
8.
采用磷酸沉淀法从低锂高盐溶液中回收锂,研究了pH、温度、磷酸浓度对锂回收率的影响以及产品杂质的去除。结果表明:对于高盐低锂溶液,在反应温度为90 ℃、质量分数为80%的磷酸1.1倍理论用量、反应前溶液pH为7.5~8时,锂回收率达96.82%,且产品质量满足行业标准要求。该方法转化率较高,锂资源能够充分利用,且工艺简单,便于操作,易于实现工业化生产,为回收低浓度含锂溶液中的锂提供了一定的理论指导。 相似文献
9.
西藏有丰富的卤水锂资源,笔者通过多年的研究,开发了一种对西藏扎布耶盐湖卤水中得到的碳酸盐型锂精矿进行加工提纯的新工艺--深度碳化法。在一定的二氧化碳压力、一定的反应温度下,固体碳酸锂精矿可以变为可溶于水的碳酸氢锂,从而与不溶杂质分离,然后经过树脂交换除杂质、加热分解、精制洗涤、烘干、粉碎,得到电池级碳酸锂。这种新工艺与现行的苛化法工艺相比有以下几大优点:工艺简单、流程短、物料流通量小、金属回收率高、污染小、成本低、投资少,是目前最有前途的一条工艺路线。此新工艺已经获得国家发明专利(CN,102502720)。 相似文献
10.
2011年4月7日,澳大利亚Orocobre公司宣布,该公司已成功利用阿根廷奥拉罗斯盐湖(Salar de Olaroz)的卤水生产出电池级的碳酸锂产品。其制备过程为:利用循环卤水生产低纯度的粗碳酸锂,通过精炼得到高纯碳酸锂产品。该产 相似文献
11.
12.
主要针对含锂卤水通过氯化锂与碳酸钠反应结晶制备高纯度碳酸锂过程中存在的结晶问题做了实验研究。通过考察反应结晶初始浓度、反应温度、进料速率、晶种用量、搅拌速率、进料浓度以及添加剂等对碳酸锂产品的平均粒度及晶体形貌的影响,优化了反应结晶制备碳酸锂的工艺参数。研究表明:在不同优化参数的作用下,通过调控碳酸锂的反应结晶过程,可改变碳酸锂晶体的形貌、粒度及固液分离效果。 相似文献
13.
中国主要以矿石为原料生产碳酸锂(Li2CO3),而从锂含量丰富的盐湖卤水中直接生产优质的碳酸锂产品具有广阔的前景。对氯化锂(LiCl)和碳酸钠(Na2CO3)反应结晶生产碳酸锂的过程做了研究,考察了碳酸钠加入量、搅拌速度、温度、氯化锂浓度、添加剂及加料方式对反应结晶过程的影响。得到了较佳的工艺条件:以反加料的方式进行反应,碳酸钠加入量为理论加入量的110%,搅拌速度为400 r/min,反应温度为80 ℃,c(LiCl)=3.2 mol/L。结果表明,搅拌转速对产品产率的影响不明显,碳酸钠加入量、温度和氯化锂浓度对产品的产率有影响,其中温度和氯化锂浓度的影响显著。加料方式和加入聚丙烯酸(PAA)作为添加剂可以得到不同的产品形貌;搅拌速度、反应温度、LiCl浓度以及PAA作为添加剂对Li2CO3纯度均有一定程度的影响。 相似文献
14.
根据西藏扎布耶湖的高锂镁比特性,以卤水析出的粗碳酸锂为原料,确定了经济实用的化学分步碱化沉淀,去除杂质元素,最后碳酸化沉淀碳酸锂的提纯工艺。研究了沉淀工艺、不同水体系和沉淀剂对碳酸锂纯度的影响。采用等离子发射光谱、红外光谱、X射线衍射、扫描电镜等对高纯碳酸锂进行表征。结果表明,最佳工艺条件是在纯净水体系中经化学分步碱化沉淀,去除铁、铝、镁、钙等杂质,最后碳酸铵沉锂,可获得纯度为99.90%以上的白色松软的高纯碳酸锂。红外谱图和XRD衍射谱图显示样品为扎布耶型的纯碳酸锂;扫描电镜显示碳酸锂晶体为棒状,长为3~5 μm,直径为0.5 μm以下。 相似文献
15.
采用微波气液混相反应结晶法制备电池级Fe PO4,并利用FT-IR、XRD、TG-DSC、SEM以及粒度分析等手段表征产品的分子结构、晶体结构、形貌和粒度分布。研究了微波结晶过程中温度及酸度对磷酸铁产品性能的影响规律,探究在较低p H(0.1~0.3)下HNO3对磷酸铁微波结晶的影响。实验结果表明:体系中由于HNO3的存在,微波加热后汽化、分解成的大量气相,在气液界面中强化并促使正磷酸铁的结晶,缩短了结晶时间,改变结晶产物形貌,晶粒外观更为规则,呈菱形结构;较高的酸度避免Fe3+的水解,提高正磷酸铁的纯度。 相似文献
16.
针对江西宜丰地区氧化锂质量分数<2.0%以下中低品位锂瓷土矿,研究了硫酸铵法提取碳酸锂技术路线。首先,利用二步焙烧工艺,有利于脱氟、提高锂浸出率,并且能够有效防止结窑现象发生。在浸出液除杂过程中,采用成矾除铝的方法将大量溶出的铝离子转变为KAl(SO4)2·12H2O、NH4Al(SO4)2·12H2O等有价值复盐,规避了传统石膏法产生的大量固废,有70%的铝离子被转变为矾盐晶体,同时带出大量的结晶水,减轻后续浓缩压力,对比传统的石膏法产生大量固废而言,其优点是显而易见的。碳化反应产品的XRD以及氧化锂含量分析表明,碳酸锂的纯度达到99%以上,全程锂收率为50%~60%。作为提锂实验对比,采用宜春414矿锂质量分数为4.0%的锂云母,由于414矿样中铝的相对含量更低,导致相同的除杂难度下得到的414矿样中浸出液锂离子浓度更高,浓缩倍数更小,414矿样的锂回收率更高。实验结果表明,中低品位锂瓷土提锂的工艺规律,通过适当改变参数,能够应用于难度更低的高品位的锂云母提锂过程。 相似文献
17.
以高镁磷尾矿为原料,采用碳化法对高镁磷尾矿中的磷、镁、钙进行分离,经过煅烧、消化、碳化、热解处理等工序得到碱式碳酸镁和磷精矿。实验结果表明:将高镁磷尾矿煅烧后的消化料浆先进行常压碳化然后进行加压碳化,加压碳化条件为料浆氧化镁质量浓度为12.0~13.5 g/L、二氧化碳分压为0.18 MPa、碳化终点温度为25 ℃,在此条件下镁的回收率达到87%~90%,得到的磷精矿五氧化二磷质量分数达到28%~30%,磷的回收率为60%~65%;将两步碳化后得到的重镁水进行热解,热解条件为重镁水氧化镁质量浓度为10~12 g/L、真空度为0.085 MPa、热解温度为60 ℃、热解时间为50 min,在此条件下所得滤液氧化镁质量浓度为0.7 g/L,镁的回收率为93%。以高镁磷尾矿为原料,采用碳化法制得碱式碳酸镁,经分析产品质量符合HG/T 2959—2010《工业水合碱式碳酸镁》的要求。采用碳化法处理高镁磷尾矿,磷、镁回收率高。此方法为中国高镁磷尾矿的回收利用提供了一条行之有效的技术途径。 相似文献